ﻻ يوجد ملخص باللغة العربية
In the literature on parameterized graph problems, there has been an increased effort in recent years aimed at exploring novel notions of graph edit-distance that are more powerful than the size of a modulator to a specific graph class. In this line of research, Bulian and Dawar [Algorithmica, 2016] introduced the notion of elimination distance and showed that deciding whether a given graph has elimination distance at most $k$ to any minor-closed class of graphs is fixed-parameter tractable parameterized by $k$ [Algorithmica, 2017]. There has been a subsequent series of results on the fixed-parameter tractability of elimination distance to various graph classes. However, one class of graph classes to which the computation of elimination distance has remained open is the class of graphs that are characterized by the exclusion of a family ${cal F}$ of finite graphs as topological minors. In this paper, we settle this question by showing that the problem of determining elimination distance to such graphs is also fixed-parameter tractable.
A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing t
The class of even-hole-free graphs is very similar to the class of perfect graphs, and was indeed a cornerstone in the tools leading to the proof of the Strong Perfect Graph Theorem. However, the complexity of computing a maximum independent set (MIS
Understanding the structure of minor-free metrics, namely shortest path metrics obtained over a weighted graph excluding a fixed minor, has been an important research direction since the fundamental work of Robertson and Seymour. A fundamental idea t
We show that the k-Dominating Set problem is fixed parameter tractable (FPT) and has a polynomial kernel for any class of graphs that exclude K_{i,j} as a subgraph, for any fixed i, j >= 1. This strictly includes every class of graphs for which this
A classical problem in comparative genomics is to compute the rearrangement distance, that is the minimum number of large-scale rearrangements required to transform a given genome into another given genome. While the most traditional approaches in