ﻻ يوجد ملخص باللغة العربية
We build a quantum cellular automaton (QCA) which coincides with 1+1 QED on its known continuum limits. It consists in a circuit of unitary gates driving the evolution of particles on a one dimensional lattice, and having them interact with the gauge field on the links. The particles are massive fermions, and the evolution is exactly U(1) gauge-invariant. We show that, in the continuous-time discrete-space limit, the QCA converges to the Kogut-Susskind staggered version of 1+1 QED. We also show that, in the continuous spacetime limit and in the free one particle sector, it converges to the Dirac equation, a strong indication that the model remains accurate in the relativistic regime.
We show that the Dirac quantum cellular automaton [Ann. Phys. 354 (2015) 244] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at re
Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulati
We analytically diagonalize a discrete-time on-site interacting fermionic cellular automaton in the two-particle sector. Important features of the solutions sensibly differ from those of analogous Hamiltonian models. In particular, we found a wider v
Improved lattice actions for Kogut-Susskind quarks have been shown to improve rotational symmetry and flavor symmetry. In this work we find improved scaling behavior of the rho and nucleon masses expressed in units of a length scale obtained from the
We study a cellular automaton model, which allows diffusion of energy (or equivalently any other physical quantities such as mass of a particular compound) at every lattice site after each timestep. Unit amount of energy is randomly added onto a site