ﻻ يوجد ملخص باللغة العربية
Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.
Dirac particle represents a fundamental constituent of our nature. Simulation of Dirac particle dynamics by a controllable quantum system using quantum walks will allow us to investigate the non-classical nature of dynamics in its discrete form. In t
We show that the Dirac quantum cellular automaton [Ann. Phys. 354 (2015) 244] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at re
We analytically diagonalize a discrete-time on-site interacting fermionic cellular automaton in the two-particle sector. Important features of the solutions sensibly differ from those of analogous Hamiltonian models. In particular, we found a wider v
This paper studies the spectrum of a multi-dimensional split-step quantum walk with a defect that cannot be analysed in the previous papers. To this end, we have developed a new technique which allow us to use a spectral mapping theorem for the one-d
We build a quantum cellular automaton (QCA) which coincides with 1+1 QED on its known continuum limits. It consists in a circuit of unitary gates driving the evolution of particles on a one dimensional lattice, and having them interact with the gauge