ﻻ يوجد ملخص باللغة العربية
We analytically diagonalize a discrete-time on-site interacting fermionic cellular automaton in the two-particle sector. Important features of the solutions sensibly differ from those of analogous Hamiltonian models. In particular, we found a wider variety of scattering processes, we have bound states for every value of the total momentum, and there exist bound states also in the free case, where the coupling constant is null.
We show that the Dirac quantum cellular automaton [Ann. Phys. 354 (2015) 244] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at re
Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulati
We construct a three-dimensional quantum cellular automaton (QCA), an automorphism of the local operator algebra on a lattice of qubits, which disentangles the ground state of the Walker-Wang three fermion model. We show that if this QCA can be reali
Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-loca
Quantum phases of matter are resources for notions of quantum computation. In this work, we establish a new link between concepts of quantum information theory and condensed matter physics by presenting a unified understanding of symmetry-protected t