ﻻ يوجد ملخص باللغة العربية
In this paper, we aim to solve high dimensional convex quadratic programming (QP) problems with a large number of quadratic terms, linear equality and inequality constraints. In order to solve the targeted problems to a desired accuracy efficiently, we develop a two-phase proximal augmented Lagrangian method, with Phase I to generate a reasonably good initial point to warm start Phase II to obtain an accurate solution efficiently. More specifically, in Phase I, based on the recently developed symmetric Gauss-Seidel (sGS) decomposition technique, we design a novel sGS based semi-proximal augmented Lagrangian method for the purpose of finding a solution of low to medium accuracy. Then, in Phase II, a proximal augmented Lagrangian algorithm is proposed to obtain a more accurate solution efficiently. Extensive numerical results evaluating the performance of our proposed algorithm against the highly optimized commercial solver Gurobi and the open source solver OSQP are presented to demonstrate the high efficiency and robustness of our proposed algorithm for solving various classes of large-scale convex QP problems.
We propose a semi-proximal augmented Lagrangian based decomposition method for convex composite quadratic conic programming problems with primal block angular structures. Using our algorithmic framework, we are able to naturally derive several well k
The augmented Lagrangian method (ALM) is a fundamental tool for solving the canonical convex minimization problem with linear constraints, and efficiently and easily how to implement the original ALM is affirmatively significant. Recently, He and Yua
Shape-constrained convex regression problem deals with fitting a convex function to the observed data, where additional constraints are imposed, such as component-wise monotonicity and uniform Lipschitz continuity. This paper provides a unified frame
This paper considers the problem of minimizing a convex expectation function over a closed convex set, coupled with a set of inequality convex expectation constraints. We present a new stochastic approximation type algorithm, namely the stochastic ap
In this paper we consider a class of convex conic programming. In particular, we propose an inexact augmented Lagrangian (I-AL) method for solving this problem, in which the augmented Lagrangian subproblems are solved approximately by a variant of Ne