ترغب بنشر مسار تعليمي؟ اضغط هنا

Iteration-complexity of first-order augmented Lagrangian methods for convex conic programming

85   0   0.0 ( 0 )
 نشر من قبل Zhaosong Lu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider a class of convex conic programming. In particular, we propose an inexact augmented Lagrangian (I-AL) method for solving this problem, in which the augmented Lagrangian subproblems are solved approximately by a variant of Nesterovs optimal first-order method. We show that the total number of first-order iterations of the proposed I-AL method for computing an $epsilon$-KKT solution is at most $mathcal{O}(epsilon^{-7/4})$. We also propose a modified I-AL method and show that it has an improved iteration-complexity $mathcal{O}(epsilon^{-1}logepsilon^{-1})$, which is so far the lowest complexity bound among all first-order I-AL type of methods for computing an $epsilon$-KKT solution. Our complexity analysis of the I-AL methods is mainly based on an analysis on inexact proximal point algorithm (PPA) and the link between the I-AL methods and inexact PPA. It is substantially different from the existing complexity analyses of the first-order I-AL methods in the literature, which typically regard the I-AL methods as an inexact dual gradient method. Compared to the mostly related I-AL methods cite{Lan16}, our modified I-AL method is more practically efficient and also applicable to a broader class of problems.



قيم البحث

اقرأ أيضاً

86 - Zichong Li , Yangyang Xu 2020
First-order methods (FOMs) have been widely used for solving large-scale problems. A majority of existing works focus on problems without constraint or with simple constraints. Several recent works have studied FOMs for problems with complicated func tional constraints. In this paper, we design a novel augmented Lagrangian (AL) based FOM for solving problems with non-convex objective and convex constraint functions. The new method follows the framework of the proximal point (PP) method. On approximately solving PP subproblems, it mixes the usage of the inexact AL method (iALM) and the quadratic penalty method, while the latter is always fed with estimated multipliers by the iALM. We show a complexity result of $O(varepsilon^{-frac{5}{2}}|logvarepsilon|)$ for the proposed method to achieve an $varepsilon$-KKT point. This is the best known result. Theoretically, the hybrid method has lower iteration-complexity requirement than its counterpart that only uses iALM to solve PP subproblems, and numerically, it can perform significantly better than a pure-penalty-based method. Numerical experiments are conducted on nonconvex linearly constrained quadratic programs and nonconvex QCQP. The numerical results demonstrate the efficiency of the proposed methods over existing ones.
We propose a semi-proximal augmented Lagrangian based decomposition method for convex composite quadratic conic programming problems with primal block angular structures. Using our algorithmic framework, we are able to naturally derive several well k nown augmented Lagrangian based decomposition methods for stochastic programming such as the diagonal quadratic approximation method of Mulvey and Ruszczy{n}ski. Moreover, we are able to derive novel enhancements and generalizations of these well known methods. We also propose a semi-proximal symmetric Gauss-Seidel based alternating direction method of multipliers for solving the corresponding dual problem. Numerical results show that our algorithms can perform well even for very large instances of primal block angular convex QP problems. For example, one instance with more than $300,000$ linear constraints and $12,500,000$ nonnegative variables is solved in less than a minute whereas Gurobi took more than 3 hours, and another instance {tt qp-gridgen1} with more than $331,000$ linear constraints and $986,000$ nonnegative variables is solved in about 5 minutes whereas Gurobi took more than 35 minutes.
175 - Shengjie Xu 2021
The augmented Lagrangian method (ALM) is a fundamental tool for solving the canonical convex minimization problem with linear constraints, and efficiently and easily how to implement the original ALM is affirmatively significant. Recently, He and Yua n have proposed a balanced version of ALM [B.S. He and X.M. Yuan, arXiv:2108.08554, 2021], which reshapes the original ALM by balancing its subproblems and makes the benchmark ALM easier to implement without any additional condition. In practice, the balanced ALM updates the new iterate by a primal-dual order. In this note, exploiting the variational inequality structure of the most recent balanced ALM, we propose a dual-primal version of the balanced ALM for linearly constrained convex minimization problems. The novel proposed method generates the new iterate by a dual-primal order and enjoys the same computational difficulty with the original primal-dual balanced ALM. Furthermore, under the lens of the proximal point algorithm, we conduct the convergence analysis of the novel introduced method in the context of variational inequalities. Numerical tests on the basic pursuit problem demonstrate that the introduced method enjoys the same high efficiency with the prototype balanced ALM.
In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequ ence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $tilde O(varepsilon^{-5/2})$ to produce an $varepsilon$-stationary point under the Slaters condition. When the constraint functions are non-convex, the complexity becomes $tilde O(varepsilon^{-3})$ if a non-singularity condition holds on constraints and otherwise $tilde O(varepsilon^{-4})$ if a feasible initial solution is available.
On solving a convex-concave bilinear saddle-point problem (SPP), there have been many works studying the complexity results of first-order methods. These results are all about upper complexity bounds, which can determine at most how many efforts woul d guarantee a solution of desired accuracy. In this paper, we pursue the opposite direction by deriving lower complexity bounds of first-order methods on large-scale SPPs. Our results apply to the methods whose iterates are in the linear span of past first-order information, as well as more general methods that produce their iterates in an arbitrary manner based on first-order information. We first work on the affinely constrained smooth convex optimization that is a special case of SPP. Different from gradient method on unconstrained problems, we show that first-order methods on affinely constrained problems generally cannot be accelerated from the known convergence rate $O(1/t)$ to $O(1/t^2)$, and in addition, $O(1/t)$ is optimal for convex problems. Moreover, we prove that for strongly convex problems, $O(1/t^2)$ is the best possible convergence rate, while it is known that gradient methods can have linear convergence on unconstrained problems. Then we extend these results to general SPPs. It turns out that our lower complexity bounds match with several established upper complexity bounds in the literature, and thus they are tight and indicate the optimality of several existing first-order methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا