ﻻ يوجد ملخص باللغة العربية
The augmented Lagrangian method (ALM) is a fundamental tool for solving the canonical convex minimization problem with linear constraints, and efficiently and easily how to implement the original ALM is affirmatively significant. Recently, He and Yuan have proposed a balanced version of ALM [B.S. He and X.M. Yuan, arXiv:2108.08554, 2021], which reshapes the original ALM by balancing its subproblems and makes the benchmark ALM easier to implement without any additional condition. In practice, the balanced ALM updates the new iterate by a primal-dual order. In this note, exploiting the variational inequality structure of the most recent balanced ALM, we propose a dual-primal version of the balanced ALM for linearly constrained convex minimization problems. The novel proposed method generates the new iterate by a dual-primal order and enjoys the same computational difficulty with the original primal-dual balanced ALM. Furthermore, under the lens of the proximal point algorithm, we conduct the convergence analysis of the novel introduced method in the context of variational inequalities. Numerical tests on the basic pursuit problem demonstrate that the introduced method enjoys the same high efficiency with the prototype balanced ALM.
This paper considers a general convex constrained problem setting where functions are not assumed to be differentiable nor Lipschitz continuous. Our motivation is in finding a simple first-order method for solving a wide range of convex optimization
Nonlinearly constrained nonconvex and nonsmooth optimization models play an increasingly important role in machine learning, statistics and data analytics. In this paper, based on the augmented Lagrangian function we introduce a flexible first-order
We propose a semi-proximal augmented Lagrangian based decomposition method for convex composite quadratic conic programming problems with primal block angular structures. Using our algorithmic framework, we are able to naturally derive several well k
Stochastic gradient methods (SGMs) have been widely used for solving stochastic optimization problems. A majority of existing works assume no constraints or easy-to-project constraints. In this paper, we consider convex stochastic optimization proble
We introduce a novel primal-dual flow for affine constrained convex optimization problem. As a modification of the standard saddle-point system, our primal-dual flow is proved to possesses the exponential decay property, in terms of a tailored Lyapun