ﻻ يوجد ملخص باللغة العربية
Context. The tropospheric wind pattern in Jupiter consists of alternating prograde and retrograde zonal jets with typical velocities of up to 100 m/s around the equator. At much higher altitudes, in the ionosphere, strong auroral jets have been discovered with velocities of 1-2 km/s. There is no such direct measurement in the stratosphere of the planet. Aims. In this paper, we bridge the altitude gap between these measurements by directly measuring the wind speeds in Jupiters stratosphere. Methods. We use the Atacama Large Millimeter/submillimeter Arrays very high spectral and angular resolution imaging of the stratosphere of Jupiter to retrieve the wind speeds as a function of latitude by fitting the Doppler shifts induced by the winds on the spectral lines. Results. We detect for the first time equatorial zonal jets that reside at 1 mbar, i.e. above the altitudes where Jupiters Quasi-Quadrennial Oscillation occurs. Most noticeably, we find 300-400 m/s non-zonal winds at 0.1 mbar over the polar regions underneath the main auroral ovals. They are in counter-rotation and lie several hundreds of kilometers below the ionospheric auroral winds. We suspect them to be the lower tail of the ionospheric auroral winds. Conclusions. We detect directly and for the first time strong winds in Jupiters stratosphere. They are zonal at low-to-mid latitudes and non-zonal at polar latitudes. The wind system found at polar latitudes may help increase the effciency of chemical complexification by confining the photochemical products in a region of large energetic electron precipitation.
Acetylene (C$_2$H$_2$) and ethane (C$_2$H$_6$) are both produced in the stratosphere of Jupiter via photolysis of methane (CH$_4$). Despite this common source, the latitudinal distribution of the two species is radically different, with acetylene dec
Context. Atmospheric superrotating flows at the equator are an almost ubiquitous result of simulations of hot Jupiters, and a theory explaining how this zonally coherent flow reaches an equilibrium has been developed in the literature. However, this
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planets rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the
We report observations of the high (R$sim$18000) and medium (R$sim$5900) resolution, near-infrared spectra of Jupiters polar regions with the GNIRS instrument at the Gemini North telescope. The observations correspond to the area of main auroral oval
Data assimilation is an increasingly popular technique in Mars atmospheric science, but its effect on the mean states of the underlying atmosphere models has not been thoroughly examined. The robustness of results to the choice of model and assimilat