ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing the long-term variability of acetylene and ethane in the stratosphere of Jupiter

80   0   0.0 ( 0 )
 نشر من قبل Henrik Melin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Acetylene (C$_2$H$_2$) and ethane (C$_2$H$_6$) are both produced in the stratosphere of Jupiter via photolysis of methane (CH$_4$). Despite this common source, the latitudinal distribution of the two species is radically different, with acetylene decreasing in abundance towards the pole, and ethane increasing towards the pole. We present six years of NASA IRTF TEXES mid-infrared observations of the zonally-averaged emission of methane, acetylene and ethane. We confirm that the latitudinal distributions of ethane and acetylene are decoupled, and that this is a persistent feature over multiple years. The acetylene distribution falls off towards the pole, peaking at $sim$30$^{circ}$N with a volume mixing ratio (VMR) of $sim$0.8 parts per million (ppm) at 1 mbar and still falling off at $pm70^circ$ with a VMR of $sim$0.3 ppm. The acetylene distributions are asymmetric on average, but as we move from 2013 to 2017, the zonally-averaged abundance becomes more symmetric about the equator. We suggest that both the short term changes in acetylene and its latitudinal asymmetry is driven by changes to the vertical stratospheric mixing, potentially related to propagating wave phenomena. Unlike acetylene, ethane has a symmetric distribution about the equator that increases toward the pole, with a peak mole fraction of $sim$18 ppm at about $pm50^{circ}$ latitude, with a minimum at the equator of $sim$10 ppm at 1 mbar. [...] The equator-to-pole distributions of acetylene and ethane are consistent with acetylene having a shorter lifetime than ethane that is not sensitive to longer advective timescales, but is augmented by short-term dynamics, such as vertical mixing. Conversely, the long lifetime of ethane allows it to be transported to higher latitudes faster than it can be chemically depleted.

قيم البحث

اقرأ أيضاً

Comet Shoemaker-Levy 9 impacted Jupiter in July 1994, leaving its stratosphere with several new species, among them water vapor (H2O). With the aid of a photochemical model H2O can be used as a dynamical tracer in the jovian stratosphere. In this pap er, we aim at constraining vertical eddy diffusion (Kzz) at the levels where H2O resides. We monitored the H2O disk-averaged emission at 556.936 GHz with the Odin space telescope between 2002 and 2019, covering nearly two decades. We analyzed the data with a combination of 1D photochemical and radiative transfer models to constrain vertical eddy diffusion in the stratosphere of Jupiter. The Odin observations show us that the emission of H2O has an almost linear decrease of about 40% between 2002 and 2019.We can only reproduce our time series if we increase the magnitude of Kzz in the pressure range where H2O diffuses downward from 2002 to 2019, i.e. from ~0.2 mbar to ~5 mbar. However, this modified Kzz is incompatible with hydrocarbon observations. We find that, even if allowance is made for the initially large abundances of H2O and CO at the impact latitudes, the photochemical conversion of H2O to CO2 is not sufficient to explain the progressive decline of the H2O line emission, suggestive of additional loss mechanisms. The Kzz we derived from the Odin observations of H2O can only be viewed as an upper limit in the ~0.2 mbar to ~5 mbar pressure range. The incompatibility between the interpretations made from H2O and hydrocarbon observations probably results from 1D modeling limitations. Meridional variability of H2O, most probably at auroral latitudes, would need to be assessed and compared with that of hydrocarbons to quantify the role of auroral chemistry in the temporal evolution of the H2O abundance since the SL9 impacts. Modeling the temporal evolution of SL9 species with a 2D model would be the next natural step.
160 - T. Cavalie , B. Benmahi , V. Hue 2021
Context. The tropospheric wind pattern in Jupiter consists of alternating prograde and retrograde zonal jets with typical velocities of up to 100 m/s around the equator. At much higher altitudes, in the ionosphere, strong auroral jets have been disco vered with velocities of 1-2 km/s. There is no such direct measurement in the stratosphere of the planet. Aims. In this paper, we bridge the altitude gap between these measurements by directly measuring the wind speeds in Jupiters stratosphere. Methods. We use the Atacama Large Millimeter/submillimeter Arrays very high spectral and angular resolution imaging of the stratosphere of Jupiter to retrieve the wind speeds as a function of latitude by fitting the Doppler shifts induced by the winds on the spectral lines. Results. We detect for the first time equatorial zonal jets that reside at 1 mbar, i.e. above the altitudes where Jupiters Quasi-Quadrennial Oscillation occurs. Most noticeably, we find 300-400 m/s non-zonal winds at 0.1 mbar over the polar regions underneath the main auroral ovals. They are in counter-rotation and lie several hundreds of kilometers below the ionospheric auroral winds. We suspect them to be the lower tail of the ionospheric auroral winds. Conclusions. We detect directly and for the first time strong winds in Jupiters stratosphere. They are zonal at low-to-mid latitudes and non-zonal at polar latitudes. The wind system found at polar latitudes may help increase the effciency of chemical complexification by confining the photochemical products in a region of large energetic electron precipitation.
We present the results of an investigation using near-infrared spectra of Pluto taken on 72 separate nights using SpeX/IRTF. These data were obtained between 2001 and 2013 at various sub-observer longitudes. The aim of this work was to confirm the pr esence of ethane ice and to determine any longitudinal trends on the surface of Pluto. We computed models of the continuum near the 2.405 {mu}m band using Hapke theory and calculated an equivalent width of the ethane absorption feature for six evenly-spaced longitude bins and a grand average spectrum. The 2.405 {mu}m band on Pluto was detected at the 7.5-{sigma} level from the grand average spectrum. Additionally, the band was found to vary longitudinally with the highest absorption occurring in the N$_2$-rich region and the lowest absorption occurring in the visibly dark region. The longitudinal variability of $^{12}$CO does not match that of the 2.405 {mu}m band, suggesting a minimal contribution to the band by $^{13}$CO. We argue for ethane production in the atmosphere and present a theory of volatile transport to explain the observed longitudinal trend.
We investigate the long-term variability exhibited by the X-ray point sources in the starburst galaxy M82. By combining 9 Chandra observations taken between 1999 and 2007, we detect 58 X-ray point sources within the D25 isophote of M82 down to a lumi nosity of ~ 10^37 ergs/s. Of these 58 sources, we identify 3 supernova remnant candidates and one supersoft source. Twenty-six sources in M82 exhibit long-term (i.e., days to years) flux variability and 3 show long-term spectral variability. Furthermore, we classify 26 sources as variables and 10 as persistent sources. Among the total 26 variables, 17 varied by a flux ratio of > 3 and 6 are transient candidates. By comparing with other nearby galaxies, M82 shows extremely strong long-term X-ray variability that 47% of the X-ray sources are variables with a flux ratio of > 3. The strong X-ray variability of M82 suggests that the population is dominated by X-ray binaries.
We present the results from the spectral analysis of more than 7,500 RXTE spectra of 10 AGN, which have been observed by RXTE regularly over a long period of time ~ 7-11 years. These observations most probably sample most of the flux and spectral var iations that these objects exhibit, thus, they are ideal for the study of their long term X-ray spectral variability. We modelled the 3-10 spectrum of each observation in a uniform way using a simple power-law model (with the addition of Gaussian line and/or edge to model the iron Kalpha emission/absorption features, if necessary) to consistently parametrize the shape of the observed X-ray continuum. We found that the average spectral slope does not correlate with source luminosity or black hole mass, while it correlates positively with the average accretion rate. We have also determined the (positive) spectral slope-flux relation for each object, over a larger flux range than before. We found that this correlation is similar in almost all objects. We discuss this global spectral slope-flux trend in the light of current models for spectral variability. We consider (i) intrinsic variability, expected e.g. from Comptonization processes, (ii) variability caused by absorption of X-rays by a single absorber whose ionization parameter varies proportionally to the continuum flux variations, (iii) variability resulting from the superposition of a constant reflection component and an intrinsic power-law which is variable in flux but constant in shape, and, (iv) variability resulting from the superposition of a constant reflection component and an intrinsic power-law which is variable both in flux and shape. Our final conclusion is that scenario (iv) describes better our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا