ﻻ يوجد ملخص باللغة العربية
Supervised learning based object detection frameworks demand plenty of laborious manual annotations, which may not be practical in real applications. Semi-supervised object detection (SSOD) can effectively leverage unlabeled data to improve the model performance, which is of great significance for the application of object detection models. In this paper, we revisit SSOD and propose Instant-Teaching, a completely end-to-end and effective SSOD framework, which uses instant pseudo labeling with extended weak-strong data augmentations for teaching during each training iteration. To alleviate the confirmation bias problem and improve the quality of pseudo annotations, we further propose a co-rectify scheme based on Instant-Teaching, denoted as Instant-Teaching$^*$. Extensive experiments on both MS-COCO and PASCAL VOC datasets substantiate the superiority of our framework. Specifically, our method surpasses state-of-the-art methods by 4.2 mAP on MS-COCO when using $2%$ labeled data. Even with full supervised information of MS-COCO, the proposed method still outperforms state-of-the-art methods by about 1.0 mAP. On PASCAL VOC, we can achieve more than 5 mAP improvement by applying VOC07 as labeled data and VOC12 as unlabeled data.
This paper presents an end-to-end semi-supervised object detection approach, in contrast to previous more complex multi-stage methods. The end-to-end training gradually improves pseudo label qualities during the curriculum, and the more and more accu
We propose 3DETR, an end-to-end Transformer based object detection model for 3D point clouds. Compared to existing detection methods that employ a number of 3D-specific inductive biases, 3DETR requires minimal modifications to the vanilla Transformer
Mainstream object detectors based on the fully convolutional network has achieved impressive performance. While most of them still need a hand-designed non-maximum suppression (NMS) post-processing, which impedes fully end-to-end training. In this pa
Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To ad
3D object detector based on Hough voting achieves great success and derives many follow-up works. Despite constantly refreshing the detection accuracy, these works suffer from handcrafted components used to eliminate redundant boxes, and thus are non