ﻻ يوجد ملخص باللغة العربية
Thermal issue is of great importance during layout design of heat source components in systems engineering, especially for high functional-density products. Thermal analysis generally needs complex simulation, which leads to an unaffordable computational burden to layout optimization as it iteratively evaluates different schemes. Surrogate modeling is an effective way to alleviate computation complexity. However, temperature field prediction (TFP) with complex heat source layout (HSL) input is an ultra-high dimensional nonlinear regression problem, which brings great difficulty to traditional regression models. The Deep neural network (DNN) regression method is a feasible way for its good approximation performance. However, it faces great challenges in both data preparation for sample diversity and uniformity in the layout space with physical constraints, and proper DNN model selection and training for good generality, which necessitates efforts of both layout designer and DNN experts. To advance this cross-domain research, this paper proposes a DNN based HSL-TFP surrogate modeling task benchmark. With consideration for engineering applicability, sample generation, dataset evaluation, DNN model, and surrogate performance metrics, are thoroughly studied. Experiments are conducted with ten representative state-of-the-art DNN models. Detailed discussion on baseline results is provided and future prospects are analyzed for DNN based HSL-TFP tasks.
Temperature field reconstruction of heat source systems (TFR-HSS) with limited monitoring sensors occurred in thermal management plays an important role in real time health detection system of electronic equipment in engineering. However, prior metho
Temperature monitoring during the life time of heat source components in engineering systems becomes essential to guarantee the normal work and the working life of these components. However, prior methods, which mainly use the interpolate estimation
Recent works have explored the potential of machine learning as data-driven turbulence closures for RANS and LES techniques. Beyond these advances, the high expressivity and agility of physics-informed neural networks (PINNs) make them promising cand
Traffic prediction is the cornerstone of an intelligent transportation system. Accurate traffic forecasting is essential for the applications of smart cities, i.e., intelligent traffic management and urban planning. Although various methods are propo
Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level pr