ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Neural Network Surrogate Modeling Benchmark for Temperature Field Prediction of Heat Source Layout

157   0   0.0 ( 0 )
 نشر من قبل Xianqi Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Xianqi Chen




اسأل ChatGPT حول البحث

Thermal issue is of great importance during layout design of heat source components in systems engineering, especially for high functional-density products. Thermal analysis generally needs complex simulation, which leads to an unaffordable computational burden to layout optimization as it iteratively evaluates different schemes. Surrogate modeling is an effective way to alleviate computation complexity. However, temperature field prediction (TFP) with complex heat source layout (HSL) input is an ultra-high dimensional nonlinear regression problem, which brings great difficulty to traditional regression models. The Deep neural network (DNN) regression method is a feasible way for its good approximation performance. However, it faces great challenges in both data preparation for sample diversity and uniformity in the layout space with physical constraints, and proper DNN model selection and training for good generality, which necessitates efforts of both layout designer and DNN experts. To advance this cross-domain research, this paper proposes a DNN based HSL-TFP surrogate modeling task benchmark. With consideration for engineering applicability, sample generation, dataset evaluation, DNN model, and surrogate performance metrics, are thoroughly studied. Experiments are conducted with ten representative state-of-the-art DNN models. Detailed discussion on baseline results is provided and future prospects are analyzed for DNN based HSL-TFP tasks.



قيم البحث

اقرأ أيضاً

Temperature field reconstruction of heat source systems (TFR-HSS) with limited monitoring sensors occurred in thermal management plays an important role in real time health detection system of electronic equipment in engineering. However, prior metho ds with common interpolations usually cannot provide accurate reconstruction performance as required. In addition, there exists no public dataset for widely research of reconstruction methods to further boost the reconstruction performance and engineering applications. To overcome this problem, this work develops a machine learning modelling benchmark for TFR-HSS task. First, the TFR-HSS task is mathematically modelled from real-world engineering problem and four types of numerically modellings have been constructed to transform the problem into discrete mapping forms. Then, this work proposes a set of machine learning modelling methods, including the general machine learning methods and the deep learning methods, to advance the state-of-the-art methods over temperature field reconstruction. More importantly, this work develops a novel benchmark dataset, namely Temperature Field Reconstruction Dataset (TFRD), to evaluate these machine learning modelling methods for the TFR-HSS task. Finally, a performance analysis of typical methods is given on TFRD, which can be served as the baseline results on this benchmark.
Temperature monitoring during the life time of heat source components in engineering systems becomes essential to guarantee the normal work and the working life of these components. However, prior methods, which mainly use the interpolate estimation to reconstruct the temperature field from limited monitoring points, require large amounts of temperature tensors for an accurate estimation. This may decrease the availability and reliability of the system and sharply increase the monitoring cost. To solve this problem, this work develops a novel physics-informed deep reversible regression models for temperature field reconstruction of heat-source systems (TFR-HSS), which can better reconstruct the temperature field with limited monitoring points unsupervisedly. First, we define the TFR-HSS task mathematically, and numerically model the task, and hence transform the task as an image-to-image regression problem. Then this work develops the deep reversible regression model which can better learn the physical information, especially over the boundary. Finally, considering the physical characteristics of heat conduction as well as the boundary conditions, this work proposes the physics-informed reconstruction loss including four training losses and jointly learns the deep surrogate model with these losses unsupervisedly. Experimental studies have conducted over typical two-dimensional heat-source systems to demonstrate the effectiveness of the proposed method.
433 - Didier Lucor 2021
Recent works have explored the potential of machine learning as data-driven turbulence closures for RANS and LES techniques. Beyond these advances, the high expressivity and agility of physics-informed neural networks (PINNs) make them promising cand idates for full fluid flow PDE modeling. An important question is whether this new paradigm, exempt from the traditional notion of discretization of the underlying operators very much connected to the flow scales resolution, is capable of sustaining high levels of turbulence characterized by multi-scale features? We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B{e}nard (RB) convection flows in rough and smooth rectangular cavities, mainly relying on DNS temperature data from the fluid bulk. We carefully quantify the computational requirements under which the formulation is capable of accurately recovering the flow hidden quantities. We then propose a new padding technique to distribute some of the scattered coordinates-at which PDE residuals are minimized-around the region of labeled data acquisition. We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs and results in a noticeable global accuracy improvement at iso-budget. Finally, we propose for the first time to relax the incompressibility condition in such a way that it drastically benefits the optimization search and results in a much improved convergence of the composite loss function. The RB results obtained at high Rayleigh number Ra = 2 $bullet$ 10 9 are particularly impressive: the predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm, with a training relying only on 1.6% of the DNS data points.
162 - Fuxian Li , Jie Feng , Huan Yan 2021
Traffic prediction is the cornerstone of an intelligent transportation system. Accurate traffic forecasting is essential for the applications of smart cities, i.e., intelligent traffic management and urban planning. Although various methods are propo sed for spatio-temporal modeling, they ignore the dynamic characteristics of correlations among locations on road networks. Meanwhile, most Recurrent Neural Network (RNN) based works are not efficient enough due to their recurrent operations. Additionally, there is a severe lack of fair comparison among different methods on the same datasets. To address the above challenges, in this paper, we propose a novel traffic prediction framework, named Dynamic Graph Convolutional Recurrent Network (DGCRN). In DGCRN, hyper-networks are designed to leverage and extract dynamic characteristics from node attributes, while the parameters of dynamic filters are generated at each time step. We filter the node embeddings and then use them to generate a dynamic graph, which is integrated with a pre-defined static graph. As far as we know, we are the first to employ a generation method to model fine topology of dynamic graph at each time step. Further, to enhance efficiency and performance, we employ a training strategy for DGCRN by restricting the iteration number of decoder during forward and backward propagation. Finally, a reproducible standardized benchmark and a brand new representative traffic dataset are opened for fair comparison and further research. Extensive experiments on three datasets demonstrate that our model outperforms 15 baselines consistently.
Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level pr ediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. For the OhioT1DM dataset, containing eight weeks data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 minutes and 60 minutes of prediction horizon (PH), respectively. To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings - the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا