ترغب بنشر مسار تعليمي؟ اضغط هنا

A Machine Learning Modelling Benchmark for Temperature Field Reconstruction of Heat-Source Systems

347   0   0.0 ( 0 )
 نشر من قبل Zhiqiang Gong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Temperature field reconstruction of heat source systems (TFR-HSS) with limited monitoring sensors occurred in thermal management plays an important role in real time health detection system of electronic equipment in engineering. However, prior methods with common interpolations usually cannot provide accurate reconstruction performance as required. In addition, there exists no public dataset for widely research of reconstruction methods to further boost the reconstruction performance and engineering applications. To overcome this problem, this work develops a machine learning modelling benchmark for TFR-HSS task. First, the TFR-HSS task is mathematically modelled from real-world engineering problem and four types of numerically modellings have been constructed to transform the problem into discrete mapping forms. Then, this work proposes a set of machine learning modelling methods, including the general machine learning methods and the deep learning methods, to advance the state-of-the-art methods over temperature field reconstruction. More importantly, this work develops a novel benchmark dataset, namely Temperature Field Reconstruction Dataset (TFRD), to evaluate these machine learning modelling methods for the TFR-HSS task. Finally, a performance analysis of typical methods is given on TFRD, which can be served as the baseline results on this benchmark.

قيم البحث

اقرأ أيضاً

Temperature monitoring during the life time of heat source components in engineering systems becomes essential to guarantee the normal work and the working life of these components. However, prior methods, which mainly use the interpolate estimation to reconstruct the temperature field from limited monitoring points, require large amounts of temperature tensors for an accurate estimation. This may decrease the availability and reliability of the system and sharply increase the monitoring cost. To solve this problem, this work develops a novel physics-informed deep reversible regression models for temperature field reconstruction of heat-source systems (TFR-HSS), which can better reconstruct the temperature field with limited monitoring points unsupervisedly. First, we define the TFR-HSS task mathematically, and numerically model the task, and hence transform the task as an image-to-image regression problem. Then this work develops the deep reversible regression model which can better learn the physical information, especially over the boundary. Finally, considering the physical characteristics of heat conduction as well as the boundary conditions, this work proposes the physics-informed reconstruction loss including four training losses and jointly learns the deep surrogate model with these losses unsupervisedly. Experimental studies have conducted over typical two-dimensional heat-source systems to demonstrate the effectiveness of the proposed method.
156 - Xianqi Chen 2021
Thermal issue is of great importance during layout design of heat source components in systems engineering, especially for high functional-density products. Thermal analysis generally needs complex simulation, which leads to an unaffordable computati onal burden to layout optimization as it iteratively evaluates different schemes. Surrogate modeling is an effective way to alleviate computation complexity. However, temperature field prediction (TFP) with complex heat source layout (HSL) input is an ultra-high dimensional nonlinear regression problem, which brings great difficulty to traditional regression models. The Deep neural network (DNN) regression method is a feasible way for its good approximation performance. However, it faces great challenges in both data preparation for sample diversity and uniformity in the layout space with physical constraints, and proper DNN model selection and training for good generality, which necessitates efforts of both layout designer and DNN experts. To advance this cross-domain research, this paper proposes a DNN based HSL-TFP surrogate modeling task benchmark. With consideration for engineering applicability, sample generation, dataset evaluation, DNN model, and surrogate performance metrics, are thoroughly studied. Experiments are conducted with ten representative state-of-the-art DNN models. Detailed discussion on baseline results is provided and future prospects are analyzed for DNN based HSL-TFP tasks.
Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm.
Federated learning (FL) is a rapidly growing research field in machine learning. However, existing FL libraries cannot adequately support diverse algorithmic development; inconsistent dataset and model usage make fair algorithm comparison challenging . In this work, we introduce FedML, an open research library and benchmark to facilitate FL algorithm development and fair performance comparison. FedML supports three computing paradigms: on-device training for edge devices, distributed computing, and single-machine simulation. FedML also promotes diverse algorithmic research with flexible and generic API design and comprehensive reference baseline implementations (optimizer, models, and datasets). We hope FedML could provide an efficient and reproducible means for developing and evaluating FL algorithms that would benefit the FL research community. We maintain the source code, documents, and user community at https://fedml.ai.
Future short or long-term space missions require a new generation of monitoring and diagnostic systems due to communication impasses as well as limitations in specialized crew and equipment. Machine learning supported diagnostic systems present a via ble solution for medical and technical applications. We discuss challenges and applicability of such systems in light of upcoming missions and outline an example use case for a next-generation medical diagnostic system for future space operations. Additionally, we present approach recommendations and constraints for the successful generation and use of machine learning models aboard a spacecraft.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا