ترغب بنشر مسار تعليمي؟ اضغط هنا

Skeleton Merger: an Unsupervised Aligned Keypoint Detector

248   0   0.0 ( 0 )
 نشر من قبل Ruoxi Shi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Detecting aligned 3D keypoints is essential under many scenarios such as object tracking, shape retrieval and robotics. However, it is generally hard to prepare a high-quality dataset for all types of objects due to the ambiguity of keypoint itself. Meanwhile, current unsupervised detectors are unable to generate aligned keypoints with good coverage. In this paper, we propose an unsupervised aligned keypoint detector, Skeleton Merger, which utilizes skeletons to reconstruct objects. It is based on an Autoencoder architecture. The encoder proposes keypoints and predicts activation strengths of edges between keypoints. The decoder performs uniform sampling on the skeleton and refines it into small point clouds with pointwise offsets. Then the activation strengths are applied and the sub-clouds are merged. Composite Chamfer Distance (CCD) is proposed as a distance between the input point cloud and the reconstruction composed of sub-clouds masked by activation strengths. We demonstrate that Skeleton Merger is capable of detecting semantically-rich salient keypoints with good alignment, and shows comparable performance to supervised methods on the KeypointNet dataset. It is also shown that the detector is robust to noise and subsampling. Our code is available at https://github.com/eliphatfs/SkeletonMerger.



قيم البحث

اقرأ أيضاً

Keypoint detection is an essential component for the object registration and alignment. However, previous works mainly focused on how to register keypoints under arbitrary rigid transformations. Differently, in this work, we reckon keypoints under an information compression scheme to represent the whole object. Based on this, we propose UKPGAN, an unsupervised 3D keypoint detector where keypoints are detected so that they could reconstruct the original object shape. Two modules: GAN-based keypoint sparsity control and salient information distillation modules are proposed to locate those important keypoints. Extensive experiments show that our keypoints preserve the semantic information of objects and align well with human annotated part and keypoint labels. Furthermore, we show that UKPGAN can be applied to either rigid objects or non-rigid SMPL human bodies under arbitrary pose deformations. As a keypoint detector, our model is stable under both rigid and non-rigid transformations, with local reference frame estimation. Our code is available on https://github.com/qq456cvb/UKPGAN.
Learning embeddings that are invariant to the pose of the object is crucial in visual image retrieval and re-identification. The existing approaches for person, vehicle, or animal re-identification tasks suffer from high intra-class variance due to d eformable shapes and different camera viewpoints. To overcome this limitation, we propose to align the image embedding with a predefined order of the keypoints. The proposed keypoint aligned embeddings model (KAE-Net) learns part-level features via multi-task learning which is guided by keypoint locations. More specifically, KAE-Net extracts channels from a feature map activated by a specific keypoint through learning the auxiliary task of heatmap reconstruction for this keypoint. The KAE-Net is compact, generic and conceptually simple. It achieves state of the art performance on the benchmark datasets of CUB-200-2011, Cars196 and VeRi-776 for retrieval and re-identification tasks.
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain. Though many DA theories and algorithms have been proposed, most of them are tailored into classification settings and may fail in regres sion tasks, especially in the practical keypoint detection task. To tackle this difficult but significant task, we present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection. Inspired by the latest theoretical work, we first utilize an adversarial regressor to maximize the disparity on the target domain and train a feature generator to minimize this disparity. However, due to the high dimension of the output space, this regressor fails to detect samples that deviate from the support of the source. To overcome this problem, we propose two important ideas. First, based on our observation that the probability density of the output space is sparse, we introduce a spatial probability distribution to describe this sparsity and then use it to guide the learning of the adversarial regressor. Second, to alleviate the optimization difficulty in the high-dimensional space, we innovatively convert the minimax game in the adversarial training to the minimization of two opposite goals. Extensive experiments show that our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
We propose PermaKey, a novel approach to representation learning based on object keypoints. It leverages the predictability of local image regions from spatial neighborhoods to identify salient regions that correspond to object parts, which are then converted to keypoints. Unlike prior approaches, it utilizes predictability to discover object keypoints, an intrinsic property of objects. This ensures that it does not overly bias keypoints to focus on characteristics that are not unique to objects, such as movement, shape, colour etc. We demonstrate the efficacy of PermaKey on Atari where it learns keypoints corresponding to the most salient object parts and is robust to certain visual distractors. Further, on downstream RL tasks in the Atari domain we demonstrate how agents equipped with our keypoints outperform those using competing alternatives, even on challenging environments with moving backgrounds or distractor objects.
We introduce KeypointDeformer, a novel unsupervised method for shape control through automatically discovered 3D keypoints. We cast this as the problem of aligning a source 3D object to a target 3D object from the same object category. Our method ana lyzes the difference between the shapes of the two objects by comparing their latent representations. This latent representation is in the form of 3D keypoints that are learned in an unsupervised way. The difference between the 3D keypoints of the source and the target objects then informs the shape deformation algorithm that deforms the source object into the target object. The whole model is learned end-to-end and simultaneously discovers 3D keypoints while learning to use them for deforming object shapes. Our approach produces intuitive and semantically consistent control of shape deformations. Moreover, our discovered 3D keypoints are consistent across object category instances despite large shape variations. As our method is unsupervised, it can be readily deployed to new object categories without requiring annotations for 3D keypoints and deformations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا