ﻻ يوجد ملخص باللغة العربية
Learning embeddings that are invariant to the pose of the object is crucial in visual image retrieval and re-identification. The existing approaches for person, vehicle, or animal re-identification tasks suffer from high intra-class variance due to deformable shapes and different camera viewpoints. To overcome this limitation, we propose to align the image embedding with a predefined order of the keypoints. The proposed keypoint aligned embeddings model (KAE-Net) learns part-level features via multi-task learning which is guided by keypoint locations. More specifically, KAE-Net extracts channels from a feature map activated by a specific keypoint through learning the auxiliary task of heatmap reconstruction for this keypoint. The KAE-Net is compact, generic and conceptually simple. It achieves state of the art performance on the benchmark datasets of CUB-200-2011, Cars196 and VeRi-776 for retrieval and re-identification tasks.
We propose a densely semantically aligned person re-identification framework. It fundamentally addresses the body misalignment problem caused by pose/viewpoint variations, imperfect person detection, occlusion, etc. By leveraging the estimation of th
In person re-identification, extracting part-level features from person images has been verified to be crucial. Most of existing CNN-based methods only locate the human parts coarsely, or rely on pre-trained human parsing models and fail in locating
Image-to-video person re-identification identifies a target person by a probe image from quantities of pedestrian videos captured by non-overlapping cameras. Despite the great progress achieved,its still challenging to match in the multimodal scenari
Re-identification of individual animals in images can be ambiguous due to subtle variations in body markings between different individuals and no constraints on the poses of animals in the wild. Person re-identification is a similar task and it has b
Recently, video-based person re-identification (re-ID) has drawn increasing attention in compute vision community because of its practical application prospects. Due to the inaccurate person detections and pose changes, pedestrian misalignment signif