ﻻ يوجد ملخص باللغة العربية
Recent theoretical work predicted emergence of chiral topological superconducting phase with spontaneously broken time reversal symmetry in a twisted bilayer composed of two high-$T_c$ cuprate monolayers, such as Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. Here we identify large intrinsic Hall response that can be probed through the polar Kerr effect measurement as a convenient signature of the $mathcal{T}$-broken phase. Our modelling predicts the Kerr angle $theta_K$ to be in the range of 10-100 $mu$rad, which is a factor of $10^3-10^4$ times larger than what is expected for the leading chiral supercondutor candidate Sr$_2$RuO$_4$. In addition we show that the optical Hall conductivity $sigma_H(omega)$ can be used to distinguish between the topological $d_{x^2-y^2}pm id_{xy}$ phase and the $d_{x^2-y^2}pm is$ phase which is also expected to be present in the phase diagram but is topologically trivial.
A great variety of novel phenomena occur when two-dimensional materials, such as graphene or transition metal dichalcogenides, are assembled into bilayers with a twist between individual layers. As a new application of this paradigm, we consider stru
Fascinating phenomena have been known to arise from the Dirac theory of relativistic quantum mechanics, which describes high energy particles having linear dispersion relations. Electrons in solids usually have non-relativistic dispersion relations b
We report muon spin relaxation measurements on the superconductor Sr2RuO4 that reveal the spontaneous appearance of an internal magnetic field below the transition temperature: the appearance of such a field indicates that the superconducting state i
The search for broken time reversal symmetry (TRSB) in unconventional superconductors intensified in the past year as more systems have been predicted to possess such a state. Following our pioneering study of TRSB states in Sr$_2$RuO$_4$ using magne
The collective mode spectrum of a symmetry-breaking state, such as a superconductor, provides crucial insight into the nature of the order parameter. In this context, we present a microscopic weak-coupling theory for the collective modes of a generic