ﻻ يوجد ملخص باللغة العربية
The collective mode spectrum of a symmetry-breaking state, such as a superconductor, provides crucial insight into the nature of the order parameter. In this context, we present a microscopic weak-coupling theory for the collective modes of a generic multi-component time-reversal symmetry breaking superconductor, and show that fluctuations in the relative amplitude and phase of the two order parameter components are well-defined underdamped collective modes, even in the presence of nodal quasiparticles. We then demonstrate that these generalized clapping modes can be detected using a number of experimental techniques including ac electronic compressibility measurements, electron energy loss spectroscopy, microwave spectroscopy, and ultrafast THz spectroscopy. Finally, we discuss the implications of our work as a new form of collective mode spectroscopy that drastically expands the number of experimental probes capable of detecting time-reversal symmetry breaking in unconventional superconductors such as Sr$_{text{2}}$RuO$_{text{4}}$, UTe$_{text{2}}$, and moire heterostructures.
Fascinating phenomena have been known to arise from the Dirac theory of relativistic quantum mechanics, which describes high energy particles having linear dispersion relations. Electrons in solids usually have non-relativistic dispersion relations b
We report muon spin relaxation measurements on the superconductor Sr2RuO4 that reveal the spontaneous appearance of an internal magnetic field below the transition temperature: the appearance of such a field indicates that the superconducting state i
In the recent search for unconventional- and topological superconductivity, noncentrosymmetric superconductors (NCSCs) rank among the most promising candidate materials. Surprisingly, some of them -- especially those containing rhenium -- seem to exh
The single helical Fermi surface on the surface state of three-dimensional topological insulator Bi2Se3 is constrained by the time-reversal invariant bulk topology to possess a spin-singlet superconducting pairing symmetry. In fact, the Cu-doped, and
We have investigated the superconducting state of the non-centrosymmetric compound Re6Zr using magnetization, heat capacity, and muon-spin relaxation/rotation (muSR) measurements. Re6Zr has a superconducting transition temperature, Tc = 6.75 K. Trans