ﻻ يوجد ملخص باللغة العربية
Fascinating phenomena have been known to arise from the Dirac theory of relativistic quantum mechanics, which describes high energy particles having linear dispersion relations. Electrons in solids usually have non-relativistic dispersion relations but their quantum excitations can mimic relativistic effects. In topological insulators, electrons have both a linear dispersion relation, the Dirac behavior, on the surface and a non-relativistic energy dispersion in the bulk. Topological phases of matter have attracted much interest, particularly broken-symmetry phases in topological insulator materials. Here, we report by Nb doping that the topological insulator Bi2Se3 can be turned into a bulk type-II superconductor while the Dirac surface dispersion in the normal state is preserved. A macroscopic magnetic ordering appears below the superconducting critical temperature of 3.2 K indicating a spontaneous spin rotation symmetry breaking of the Nb magnetic moments. Even though such a magnetic order may appear at the edge of the superconductor, it is mediated by superconductivity and presents a novel phase of matter which gives rise to a zero-field Hall effect.
The single helical Fermi surface on the surface state of three-dimensional topological insulator Bi2Se3 is constrained by the time-reversal invariant bulk topology to possess a spin-singlet superconducting pairing symmetry. In fact, the Cu-doped, and
The collective mode spectrum of a symmetry-breaking state, such as a superconductor, provides crucial insight into the nature of the order parameter. In this context, we present a microscopic weak-coupling theory for the collective modes of a generic
In the recent search for unconventional- and topological superconductivity, noncentrosymmetric superconductors (NCSCs) rank among the most promising candidate materials. Surprisingly, some of them -- especially those containing rhenium -- seem to exh
We have investigated the superconducting state of the non-centrosymmetric compound Re6Zr using magnetization, heat capacity, and muon-spin relaxation/rotation (muSR) measurements. Re6Zr has a superconducting transition temperature, Tc = 6.75 K. Trans
We report a comprehensive study of the noncentrosymmetric superconductor Mo$_3$P. Its bulk superconductivity, with $T_c = 5.5$ K, was characterized via electrical resistivity, magnetization, and heat-capacity measurements, while its microscopic elect