ترغب بنشر مسار تعليمي؟ اضغط هنا

Comprehensive topography characterization of polycrystalline diamond coatings

50   0   0.0 ( 0 )
 نشر من قبل Lars Pastewka
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The surface topography of diamond coatings strongly affects surface properties such as adhesion, friction, wear, and biocompatibility. However, the understanding of multi-scale topography, and its effect on properties, has been hindered by conventional measurement methods, which capture only a single length scale. Here, four different polycrystalline diamond coatings are characterized using transmission electron microscopy to assess the roughness down to the sub-nanometer scale. Then these measurements are combined, using the power spectral density (PSD), with conventional methods (stylus profilometry and atomic force microscopy) to characterize all scales of topography. The results demonstrate the critical importance of measuring topography across all length scales, especially because their PSDs cross over one another, such that a surface that is rougher at a larger scale may be smoother at a smaller scale and vice versa. Furthermore, these measurements reveal the connection between multi-scale topography and grain size, with characteristic scaling behavior at and slightly below the mean grain size, and self-affine fractal-like roughness at other length scales. At small (subgrain) scales, unpolished surfaces exhibit a common form of residual roughness that is self-affine in nature but difficult to detect with conventional methods. This approach of capturing topography from the atomic- to the macro-scale is termed comprehensive topography characterization, and all of the topography data from these surfaces has been made available for further analysis by experimentalists and theoreticians. Scientifically, this investigation has identified four characteristic regions of topography scaling in polycrystalline diamond materials.

قيم البحث

اقرأ أيضاً

Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work we demonstrate that diamond films grown by microwave plasma chemical vapour deposition on a silicon substrate host bright, narrowband single photon emitters in the visible to near infrared spectral range. The emitters possess fast lifetime, absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is done to investigate their inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing.
We present the result of a systematic study of the tribological properties of industrial Polytetrafluorethylene (PTFE)-based coatings carried out with an atomic force microscope. A new characterization protocol allowed the reliable and quantitative a ssessment of the friction coefficient and adhesion forces at the sub-micrometer scale even for highly corrugated industrial samples. We have studied and compared PTFE coatings charged with different additives in dry and humid environment. The influence of additives and humidity on the friction coefficient and on adhesion forces has been investigated using standard silicon nitride tips as sliders in the low-load regime.
234 - S.Shrinidhi , S. Suman , A.Shah 2016
Bismaleimide (BMI) are thermosetting polymers mainly used in aerospace applications having properties of dimensional stability, low shrinkage, chemical resistance, fire resistance, good mechanical properties and high resistance against various solven ts, acids, and water. BMI is commercially available as Homide 250. BMI coating has also been used for the corrosion protection. Metallization (AL) of BMI using vacuum evaporation was done which serves the purpose of prevention of space charge accumulation in aircraft bodies. Addition of inorganic materials like metal oxides can influence the properties of the polymer as an inorganic-organic composite. The organic-ionorganic composites have wide applications in electronics, optics, chemistry and medicine. Titanium dioxide (TiO2, Titania) has a wide range of applications starting from photocatalysis, dye-sensitized solar cells to optical coatings and electronics. A BMI-TiO2 composite was prepared by chemical route. Atmospheric Plasma Jet (APPJ) using Helium gas was also treated on BMI. XRD and FTIR studies of the composite system prepared at different temperatures showed its crystalline and structural configuration.
We report on the Raman and photoluminescence characterization of three-dimensional microstructures created in single crystal diamond with a Focused Ion Beam (FIB) assisted lift-off technique. The method is based on MeV ion implantation to create a bu ried etchable layer, followed by FIB patterning and selective etching. In the applications of such microstructures where the properties of high quality single crystal diamond are most relevant, residual damage after the fabrication process represents a critical technological issue. The results of Raman and photoluminescence characterization indicate that the partial distortion of the sp3-bonded lattice and the formation of isolated point defects are effectively removed after thermal annealing, leaving low amounts of residual damage in the final structures. Three-dimensional microstructures in single-crystal diamond offer a large range of applications, such as quantum optics devices and fully integrated opto mechanical assemblies.
Dielectric resonators are key components for many microwave and millimetre wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However sapphire is becoming a limiting factor for higher frequencies design. It is then important to find new candidates that can fulfil the requirements for millimetre wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, like modern telecommunication systems, radio astronomy (VLBI), and precision measurements at the quantum limit. High-resolution measurements were made of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 K and 330 K at microwave to sub-millimetre wave frequencies. The cryogenic measurements were made using a TE01{delta} dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes clear that polycrystalline diamond could be an important material to generate stable frequencies at millimetre waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا