ترغب بنشر مسار تعليمي؟ اضغط هنا

An $SU(4)$ chiral spin liquid and quantized dipole Hall effect in moire bilayers

91   0   0.0 ( 0 )
 نشر من قبل Yahui Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the recent proposal of realizing an SU(4) Hubbard model on triangular moire superlattices, we present a DMRG study of an $SU(4)$ spin model obtained in the limit of large repulsion for integer filling $ u_T=1,3$. We retain terms in the $t/U$ expansion up to $O(frac{t^3}{U^2})$ order, that generates nearest-neighbor exchange $J$, as well as an additional three-site ring exchange term, $K$, which is absent in the SU(2) S=1/2 case. For filling $ u_T=3$, when increasing the three-site ring exchange term $K sim frac{t^3}{U^2}$, we identify three different phases: a spin-symmetric crystal, an $SU(4)_1$ chiral spin liquid (CSL) and a decoupled one dimensional chain (DC) phase. The CSL phase exists at intermediate coupling: $U/t in [11.3,,22.9]$. The sign of $K$ is crucial to stabilizing the CSL and the DC phase. For filling $ u_T=1$ with the opposite sign of $K$, the spin-symmetric crystal phase survives to very large $K$. We propose to search for the CSL phase in moire bilayers. For example, in twisted AB stacked transition metal dichalcogenide (TMD) bilayers, the $SU(4)$ spin is formed by layer pseudospin combined with the real spin (locked to valley). The layer pseudospin carries an electric dipole moment in $z$ direction, thus the CSL is really a dipole-spin liquid, with quantum fluctuations in both the electric moment and magnetic moment . The CSL phase spontaneously breaks the time reversal symmetry and shows a quantum anomalous Hall effect in spin transport and dipole transport. Smoking gun evidence for the CSL could be obtained through measurement of the quantized dipole Hall effect in counter-flow transport.

قيم البحث

اقرأ أيضاً

We report the observation of a quantum anomalous Hall effect in twisted bilayer graphene showing Hall resistance quantized to within .1% of the von Klitzing constant $h/e^2$ at zero magnetic field.The effect is driven by intrinsic strong correlations , which polarize the electron system into a single spin and valley resolved moire miniband with Chern number $C=1$. In contrast to extrinsic, magnetically doped systems, the measured transport energy gap $Delta/k_Bapprox 27$~K is larger than the Curie temperature for magnetic ordering $T_Capprox 9$~K, and Hall quantization persists to temperatures of several Kelvin. Remarkably, we find that electrical currents as small as 1~nA can be used to controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
The recent observation of a half-integer quantized thermal Hall effect in $alpha$-RuCl$_3$ is interpreted as a unique signature of a chiral spin liquid with a Majorana edge mode. A similar quantized thermal Hall effect is expected in chiral topologic al superconductors. The unavoidable presence of gapless acoustic phonons, however, implies that, in contrast to the quantized electrical conductivity, the thermal Hall conductivity $kappa_xy$ is never exactly quantized in real materials. Here, we investigate how phonons affect the quantization of the thermal conductivity focusing on the edge theory. As an example we consider a Kitaev spin liquid gapped by an external magnetic field coupled to acoustic phonons. The coupling to phonons destroys the ballistic thermal transport of the edge mode completely, as energy can leak into the bulk, thus drastically modifying the edge-picture of the thermal Hall effect. Nevertheless, the thermal Hall conductivity remains approximately quantized and we argue, that the coupling to phonons to the edge mode is a necessary condition for the observation of the quantized thermal Hall effect. The strength of this edge coupling does, however, not affect the conductivity. We argue that for sufficiently clean systems the leading correction to the quantized thermal Hall effect, $Delta kappa_{xy}/T sim text{sign(B)} , T^2$, arises from a intrinsic anomalous Hall effect of the acoustic phonons due to Berry phases imprinted by the chiral (spin) liquid in the bulk. This correction depends on the sign but not the amplitude of the external magnetic field.
We study a symmetrical double quantum dot (DD) system with strong capacitive inter-dot coupling using renormalization group methods. The dots are attached to separate leads, and there can be a weak tunneling between them. In the regime where there is a single electron on the DD the low-energy behavior is characterized by an SU(4)-symmetric Fermi liquid theory with entangled spin and charge Kondo correlations and a phase shift $pi/4$. Application of an external magnetic field gives rise to a large magneto-conductance and a crossover to a purely charge Kondo state in the charge sector with SU(2) symmetry. In a four lead setup we find perfectly spin polarized transmission.
Experimental demonstrations of tunable correlation effects in magic-angle twisted bilayer graphene have put two-dimensional moire quantum materials at the forefront of condensed-matter research. Other twisted few-layer graphitic structures, boron-nit ride, and homo- or hetero-stacks of transition metal dichalcogenides (TMDs) have further enriched the opportunities for analysis and utilization of correlations in these systems. Recently, within the latter material class, strong spin-orbit coupling or excitonic physics were experimentally explored. The observation of a Mott insulating state and other fascinating collective phenomena such as generalized Wigner crystals, stripe phases and quantum anomalous Hall insulators confirmed the relevance of many-body interactions, and demonstrated the importance of their extended range. Since the interaction, its range, and the filling can be tuned experimentally by twist angle, substrate engineering and gating, we here explore Fermi surface instabilities and resulting phases of matter of hetero-bilayer TMDs. Using an unbiased renormalization group approach, we establish in particular that hetero-bilayer TMDs are unique platforms to realize topological superconductivity with winding number $|mathcal{N}|=4$. We show that this state reflects in pronounced experimental signatures, such as distinct quantum Hall features.
We present a comprehensive theory of the magnetic phases in twisted bilayer Cr-trihalides through a combination of first-principles calculations and atomistic simulations. We show that the stacking-dependent interlayer exchange leads to an effective moire field that is mostly ferromagnetic with antiferromagnetic patches. A wide range of noncollinear magnetic phases can be stabilized as a function of the twist angle and Dzyaloshinskii-Moriya interaction as a result of the competing interlayer antiferromagnetic coupling and the energy cost for forming domain walls. In particular, we demonstrate that for small twist angles various skyrmion crystal phases can be stabilized in both CrI$_3$ and CrBr$_3$. Our results provide an interpretation for the recent observation of noncollinear magnetic phases in twisted bilayer CrI$_3$ and demonstrate the possibility of engineering further nontrivial magnetic ground states in twisted bilayer Cr-trihalides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا