ترغب بنشر مسار تعليمي؟ اضغط هنا

$mathcal{N}=4$ chiral superconductivity in moire transition metal dichalcogenides

321   0   0.0 ( 0 )
 نشر من قبل Michael M. Scherer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimental demonstrations of tunable correlation effects in magic-angle twisted bilayer graphene have put two-dimensional moire quantum materials at the forefront of condensed-matter research. Other twisted few-layer graphitic structures, boron-nitride, and homo- or hetero-stacks of transition metal dichalcogenides (TMDs) have further enriched the opportunities for analysis and utilization of correlations in these systems. Recently, within the latter material class, strong spin-orbit coupling or excitonic physics were experimentally explored. The observation of a Mott insulating state and other fascinating collective phenomena such as generalized Wigner crystals, stripe phases and quantum anomalous Hall insulators confirmed the relevance of many-body interactions, and demonstrated the importance of their extended range. Since the interaction, its range, and the filling can be tuned experimentally by twist angle, substrate engineering and gating, we here explore Fermi surface instabilities and resulting phases of matter of hetero-bilayer TMDs. Using an unbiased renormalization group approach, we establish in particular that hetero-bilayer TMDs are unique platforms to realize topological superconductivity with winding number $|mathcal{N}|=4$. We show that this state reflects in pronounced experimental signatures, such as distinct quantum Hall features.

قيم البحث

اقرأ أيضاً

In this work, we review the results of several recent works on the experimental and theoretical studies of monolayer superconducting transition metal dichalcogenides (TMD) such as superconducting MoS2 and NbSe2. We show how the strong Ising spin-orbi t coupling (SOC), a special type of SOC which pins electron spins to out-of-plane directions, can affect the superconducting properties of the materials. Particularly, we discuss how the in-plane upper critical fields of the materials can be strongly enhanced by Ising SOC and how TMD materials can be used to engineer topological superconductors and nodal topological superconductors which support Majorana fermions.
Twisted bilayer transition metal dichalcogenides have emerged as important model systems for the investigation of correlated electron physics because their interaction strength, carrier concentration, band structure, and inversion symmetry breaking a re controllable by device fabrication, twist angle, and most importantly, gate voltage, which can be varied in situ. The low energy physics of some of these materials has been shown to be described by a moire Hubbard model generalized from the usual Hubbard model by the addition of strong, tunable spin orbit coupling and inversion symmetry breaking. In this work, we use a Hartree-Fock approximation to reach a comprehensive understanding of the moire Hubbard model on the mean field level. We determine the magnetic and metal-insulator phase diagrams, and assess the effects of spin orbit coupling, inversion symmetry breaking, and the tunable van Hove singularity. We also consider the spin and orbital effects of applied magnetic fields. This work provides guidance for experiments and sets the stage for beyond mean-field calculations.
108 - Heqiu Li , Umesh Kumar , Kai Sun 2021
Moir{e} superlattice realized in two-dimensional heterostructures offers an exciting platform to access strongly-correlated electronic states. In this work, we study transition metal dichalcogenides (TMD) Moir{e} superlattices with time-reversal-symm etry and nontrivial spin{/valley}-Chern numbers. Utilizing realistic material parameters and the method of exact diagonalization, we find that at a certain twisting angle and fractional filling, gapped fractional topological states, i.e., fractional Chern insulators, are naturally {stabilized} by simply introducing the Coulomb repulsion. In contrast to fractional quantum Hall systems, where the time-reversal symmetry has to be broken explicitly, these fractional states break the time-reversal symmetry spontaneously. {We show that the Chern number contrasting in the opposite valleys imposes a strong constraint on the nature of fractional Chern insulator and the associated low energy excitations.} We also propose to realize the non-abelian Moore-Read state in TMD Moir{e} superlattice sandwiched between nonlinear dielectric media.
Recent experiments have observed correlated insulating and possible superconducting phases in twisted homobilayer transition metal dichalcogenides (TMDs). Besides the spin-valley locked moire bands due to the intrinsic Ising spin-orbit coupling, homo bilayer moire TMDs also possess either logarithmic or power-law divergent Van Hove singularities (VHS) near the Fermi surface, controllable by an external displacement field. The former and the latter are dubbed conventional and higher-order VHS, respectively. Here, we perform a perturbative renormalization group (RG) analysis to unbiasedly study the dominant instabilities in homobilayer TMDs for both the conventional and higher-order VHS cases. We find that the spin-valley locking largely alters the RG flows and leads to instabilities unexpected in the corresponding extensively-studied graphene-based moire systems, such as spin- and valley-polarized ferromagnetism and topological superconductivity with mixed parity. In particular, for the case with two higher-order VHS, we find a spin-valley-locking-driven metallic state with no symmetry breaking in the TMDs despite the diverging bare susceptibility. Our results show how the spin-valley locking significantly affects the RG analysis and demonstrate that moire TMDs are suitable platforms to realize various interaction-induced spin-valley locked phases, highlighting physics fundamentally different from the well-studied graphene-based moire systems.
By means of high-resolution angle resolved photoelectron spectroscopy (ARPES) we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2, and Cu0.2NbS2. The tight-binding model of the electronic structure, extracted f rom ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2 the nesting vector is present despite different doping level, which lets us expect a possible enhancement of the CDW instability with Cu-intercalation in the CuxNbS2 family of materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا