ﻻ يوجد ملخص باللغة العربية
Multi-agent reinforcement learning (MARL) has become effective in tackling discrete cooperative game scenarios. However, MARL has yet to penetrate settings beyond those modelled by team and zero-sum games, confining it to a small subset of multi-agent systems. In this paper, we introduce a new generation of MARL learners that can handle nonzero-sum payoff structures and continuous settings. In particular, we study the MARL problem in a class of games known as stochastic potential games (SPGs) with continuous state-action spaces. Unlike cooperative games, in which all agents share a common reward, SPGs are capable of modelling real-world scenarios where agents seek to fulfil their individual goals. We prove theoretically our learning method, SPot-AC, enables independent agents to learn Nash equilibrium strategies in polynomial time. We demonstrate our framework tackles previously unsolvable tasks such as Coordination Navigation and large selfish routing games and that it outperforms the state of the art MARL baselines such as MADDPG and COMIX in such scenarios.
Decentralized team problems where players have asymmetric information about the state of the underlying stochastic system have been actively studied, but games between such teams are less understood. We consider a general model of zero-sum stochastic
In this paper we deal with the problem of existence of a smooth solution of the Hamilton-Jacobi-Bellman-Isaacs (HJBI for short) system of equations associated with nonzero-sum stochastic differential games. We consider the problem in unbounded domain
In this paper, we propose Posterior Sampling Reinforcement Learning for Zero-sum Stochastic Games (PSRL-ZSG), the first online learning algorithm that achieves Bayesian regret bound of $O(HSsqrt{AT})$ in the infinite-horizon zero-sum stochastic games
We study a two-player nonzero-sum stochastic differential game where one player controls the state variable via additive impulses while the other player can stop the game at any time. The main goal of this work is characterize Nash equilibria through
Measuring and promoting policy diversity is critical for solving games with strong non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). With that in mind, maintaining a pool of diverse p