ﻻ يوجد ملخص باللغة العربية
In this paper, we propose Posterior Sampling Reinforcement Learning for Zero-sum Stochastic Games (PSRL-ZSG), the first online learning algorithm that achieves Bayesian regret bound of $O(HSsqrt{AT})$ in the infinite-horizon zero-sum stochastic games with average-reward criterion. Here $H$ is an upper bound on the span of the bias function, $S$ is the number of states, $A$ is the number of joint actions and $T$ is the horizon. We consider the online setting where the opponent can not be controlled and can take any arbitrary time-adaptive history-dependent strategy. This improves the best existing regret bound of $O(sqrt[3]{DS^2AT^2})$ by Wei et. al., 2017 under the same assumption and matches the theoretical lower bound in $A$ and $T$.
Model-based reinforcement learning (RL), which finds an optimal policy using an empirical model, has long been recognized as one of the corner stones of RL. It is especially suitable for multi-agent RL (MARL), as it naturally decouples the learning a
We consider the problem of online reinforcement learning for the Stochastic Shortest Path (SSP) problem modeled as an unknown MDP with an absorbing state. We propose PSRL-SSP, a simple posterior sampling-based reinforcement learning algorithm for the
We present fictitious play dynamics for stochastic games and analyze its convergence properties in zero-sum stochastic games. Our dynamics involves players forming beliefs on opponent strategy and their own continuation payoff (Q-function), and playi
Multi-agent reinforcement learning (MARL) has become effective in tackling discrete cooperative game scenarios. However, MARL has yet to penetrate settings beyond those modelled by team and zero-sum games, confining it to a small subset of multi-agen
In this paper we address the following question: Can we approximately sample from a Bayesian posterior distribution if we are only allowed to touch a small mini-batch of data-items for every sample we generate?. An algorithm based on the Langevin equ