ترغب بنشر مسار تعليمي؟ اضغط هنا

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

98   0   0.0 ( 0 )
 نشر من قبل Ying Wen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring and promoting policy diversity is critical for solving games with strong non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). With that in mind, maintaining a pool of diverse policies via open-ended learning is an attractive solution, which can generate auto-curricula to avoid being exploited. However, in conventional open-ended learning algorithms, there are no widely accepted definitions for diversity, making it hard to construct and evaluate the diverse policies. In this work, we summarize previous concepts of diversity and work towards offering a unified measure of diversity in multi-agent open-ended learning to include all elements in Markov games, based on both Behavioral Diversity (BD) and Response Diversity (RD). At the trajectory distribution level, we re-define BD in the state-action space as the discrepancies of occupancy measures. For the reward dynamics, we propose RD to characterize diversity through the responses of policies when encountering different opponents. We also show that many current diversity measures fall in one of the categories of BD or RD but not both. With this unified diversity measure, we design the corresponding diversity-promoting objective and population effectivity when seeking the best responses in open-ended learning. We validate our methods in both relatively simple games like matrix game, non-transitive mixture model, and the complex textit{Google Research Football} environment. The population found by our methods reveals the lowest exploitability, highest population effectivity in matrix game and non-transitive mixture model, as well as the largest goal difference when interacting with opponents of various levels in textit{Google Research Football}.



قيم البحث

اقرأ أيضاً

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on determinantal point processes (DPP). By incorporating the diversity metric into best-response dynamics, we develop diverse fictitious play and diverse policy-space response oracle for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the gamescape -- convex polytopes spanned by agents mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve at least the same, and in most games, lower exploitability than PSRO solvers by finding effective and diverse strategies.
Two-player, constant-sum games are well studied in the literature, but there has been limited progress outside of this setting. We propose Joint Policy-Space Response Oracles (JPSRO), an algorithm for training agents in n-player, general-sum extensiv e form games, which provably converges to an equilibrium. We further suggest correlated equilibria (CE) as promising meta-solvers, and propose a novel solution concept Maximum Gini Correlated Equilibrium (MGCE), a principled and computationally efficient family of solutions for solving the correlated equilibrium selection problem. We conduct several experiments using CE meta-solvers for JPSRO and demonstrate convergence on n-player, general-sum games.
Coordination is often critical to forming prosocial behaviors -- behaviors that increase the overall sum of rewards received by all agents in a multi-agent game. However, state of the art reinforcement learning algorithms often suffer from converging to socially less desirable equilibria when multiple equilibria exist. Previous works address this challenge with explicit reward shaping, which requires the strong assumption that agents can be forced to be prosocial. We propose using a less restrictive peer-rewarding mechanism, gifting, that guides the agents toward more socially desirable equilibria while allowing agents to remain selfish and decentralized. Gifting allows each agent to give some of their reward to other agents. We employ a theoretical framework that captures the benefit of gifting in converging to the prosocial equilibrium by characterizing the equilibrias basins of attraction in a dynamical system. With gifting, we demonstrate increased convergence of high risk, general-sum coordination games to the prosocial equilibrium both via numerical analysis and experiments.
128 - David Mguni , Yutong Wu , Yali Du 2021
Multi-agent reinforcement learning (MARL) has become effective in tackling discrete cooperative game scenarios. However, MARL has yet to penetrate settings beyond those modelled by team and zero-sum games, confining it to a small subset of multi-agen t systems. In this paper, we introduce a new generation of MARL learners that can handle nonzero-sum payoff structures and continuous settings. In particular, we study the MARL problem in a class of games known as stochastic potential games (SPGs) with continuous state-action spaces. Unlike cooperative games, in which all agents share a common reward, SPGs are capable of modelling real-world scenarios where agents seek to fulfil their individual goals. We prove theoretically our learning method, SPot-AC, enables independent agents to learn Nash equilibrium strategies in polynomial time. We demonstrate our framework tackles previously unsolvable tasks such as Coordination Navigation and large selfish routing games and that it outperforms the state of the art MARL baselines such as MADDPG and COMIX in such scenarios.
We present a new type of coordination mechanism among multiple agents for the allocation of a finite resource, such as the allocation of time slots for passing an intersection. We consider the setting where we associate one counter to each agent, whi ch we call karma value, and where there is an established mechanism to decide resource allocation based on agents exchanging karma. The idea is that agents might be inclined to pass on using resources today, in exchange for karma, which will make it easier for them to claim the resource use in the future. To understand whether such a system might work robustly, we only design the protocol and not the agents policies. We take a game-theoretic perspective and compute policies corresponding to Nash equilibria for the game. We find, surprisingly, that the Nash equilibria for a society of self-interested agents are very close in social welfare to a centralized cooperative solution. These results suggest that many resource allocation problems can have a simple, elegant, and robust solution, assuming the availability of a karma accounting mechanism.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا