ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-positivity for a Refinement of Median Genocchi Numbers

238   0   0.0 ( 0 )
 نشر من قبل Yuan-Hsun Lo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the generating function of descent numbers for the permutations with descent pairs of prescribed parities, the distribution of which turns out to be a refinement of median Genocchi numbers. We prove the $gamma$-positivity for the polynomial and derive the generating function for the $gamma$-vectors, expressed in the form of continued fraction. We also come up with an artificial statistic that gives a $q$-analogue of the $gamma$-positivity for the permutations with descents only allowed from an odd value to an odd value.



قيم البحث

اقرأ أيضاً

99 - Andrei K. Svinin 2019
Sequences of Genocchi numbers of the first and second kind are considered. For these numbers, an approach based on their representation using sequences of polynomials is developed. Based on this approach, for these numbers some identities generalizing the known identities are constructed.
70 - Guo-Niu Han , Jing-Yi Liu 2017
The tangent number $T_{2n+1}$ is equal to the number of increasing labelled complete binary trees with $2n+1$ vertices. This combinatorial interpretation immediately proves that $T_{2n+1}$ is divisible by $2^n$. However, a stronger divisibility prope rty is known in the studies of Bernoulli and Genocchi numbers, namely, the divisibility of $(n+1)T_{2n+1}$ by $2^{2n}$. The traditional proofs of this fact need significant calculations. In the present paper, we provide a combinatorial proof of the latter divisibility by using the hook length formula for trees. Furthermore, our method is extended to $k$-ary trees, leading to a new generalization of the Genocchi numbers.
116 - Qiongqiong Pan , Jiang Zeng 2021
Recently, Lazar and Wachs (arXiv:1910.07651) showed that the (median) Genocchi numbers play a fundamental role in the study of the homogenized Linial arrangement and obtained two new permutation models (called D-permutations and E-permutations) for ( median) Genocchi numbers. They further conjecture that the distributions of cycle numbers over the two models are equal. In a follow-up, Eu et al. (arXiv:2103.09130) further proved the gamma-positivity of the descent polynomials of even-odd descent permutations, which are in bijection with E-permutations by Foatas fundamental transformation. This paper merges the above two papers by considering a general moment sequence which encompasses the number of cycles and number of drops of E-permutations. Using the combinatorial theory of continued fraction, the moment connection enables us to confirm Lazar-Wachs conjecture and obtain a natural $(p,q)$-analogue of Eu et als descent polynomials. Furthermore, we show that the $gamma$-coefficients of our $(p,q)$-analogue of descent polynomials have the same factorization flavor as the $gamma$-coeffcients of Brandens $(p,q)$-Eulerian polynomials.
In this paper, we compute the distribution of the first letter statistic on nine avoidance classes of permutations corresponding to two pairs of patterns of length four. In particular, we show that the distribution is the same for each class and is g iven by the entries of a new Schroder number triangle. This answers in the affirmative a recent conjecture of Lin and Kim. We employ a variety of techniques to prove our results, including generating trees, direct bijections and the kernel method. For the latter, we make use of in a creative way what we are trying to show in three cases to aid in solving a system of functional equations satisfied by the associated generating functions.
170 - Shi-Mei Ma , Jun Ma , Jean Yeh 2021
The object of this paper is to give a systematic treatment of excedance-type polynomials. We first give a sufficient condition for a sequence of polynomials to have alternatingly increasing property, and then we present a systematic study of the join t distribution of excedances, fixed points and cycles of permutations and derangements, signed or not, colored or not. Let $pin [0,1]$ and $qin [0,1]$ be two given real numbers. We prove that the cyc q-Eulerian polynomials of permutations are bi-gamma-positive, and the fix and cyc (p,q)-Eulerian polynomials of permutations are alternatingly increasing, and so they are unimodal with modes in the middle, where fix and cyc are the fixed point and cycle statistics. When p=1 and q=1/2, we find a combinatorial interpretation of the bi-gamma-coefficients of the (p,q)-Eulerian polynomials. We then study excedance and flag excedance statistics of signed permutations and colored permutations. In particular, we establish the relationships between the (p,q)-Eulerian polynomials and some multivariate Eulerian polynomials. Our results unify and generalize a variety of recent results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا