ﻻ يوجد ملخص باللغة العربية
We study the generating function of descent numbers for the permutations with descent pairs of prescribed parities, the distribution of which turns out to be a refinement of median Genocchi numbers. We prove the $gamma$-positivity for the polynomial and derive the generating function for the $gamma$-vectors, expressed in the form of continued fraction. We also come up with an artificial statistic that gives a $q$-analogue of the $gamma$-positivity for the permutations with descents only allowed from an odd value to an odd value.
Sequences of Genocchi numbers of the first and second kind are considered. For these numbers, an approach based on their representation using sequences of polynomials is developed. Based on this approach, for these numbers some identities generalizing the known identities are constructed.
The tangent number $T_{2n+1}$ is equal to the number of increasing labelled complete binary trees with $2n+1$ vertices. This combinatorial interpretation immediately proves that $T_{2n+1}$ is divisible by $2^n$. However, a stronger divisibility prope
Recently, Lazar and Wachs (arXiv:1910.07651) showed that the (median) Genocchi numbers play a fundamental role in the study of the homogenized Linial arrangement and obtained two new permutation models (called D-permutations and E-permutations) for (
In this paper, we compute the distribution of the first letter statistic on nine avoidance classes of permutations corresponding to two pairs of patterns of length four. In particular, we show that the distribution is the same for each class and is g
The object of this paper is to give a systematic treatment of excedance-type polynomials. We first give a sufficient condition for a sequence of polynomials to have alternatingly increasing property, and then we present a systematic study of the join