ﻻ يوجد ملخص باللغة العربية
The tangent number $T_{2n+1}$ is equal to the number of increasing labelled complete binary trees with $2n+1$ vertices. This combinatorial interpretation immediately proves that $T_{2n+1}$ is divisible by $2^n$. However, a stronger divisibility property is known in the studies of Bernoulli and Genocchi numbers, namely, the divisibility of $(n+1)T_{2n+1}$ by $2^{2n}$. The traditional proofs of this fact need significant calculations. In the present paper, we provide a combinatorial proof of the latter divisibility by using the hook length formula for trees. Furthermore, our method is extended to $k$-ary trees, leading to a new generalization of the Genocchi numbers.
Sequences of Genocchi numbers of the first and second kind are considered. For these numbers, an approach based on their representation using sequences of polynomials is developed. Based on this approach, for these numbers some identities generalizing the known identities are constructed.
We study the generating function of descent numbers for the permutations with descent pairs of prescribed parities, the distribution of which turns out to be a refinement of median Genocchi numbers. We prove the $gamma$-positivity for the polynomial
Recently, Lazar and Wachs (arXiv:1910.07651) showed that the (median) Genocchi numbers play a fundamental role in the study of the homogenized Linial arrangement and obtained two new permutation models (called D-permutations and E-permutations) for (
In this expository note we present simple proofs of the lower bound of Ramsey numbers (Erdos theorem), and of the estimation of discrepancy. Neither statements nor proofs require any knowledge beyond high-school curriculum (except a minor detail). Th
Generalizing the concept of a perfect number is a Zumkeller or integer perfect number that was introduced by Zumkeller in 2003. The positive integer $n$ is a Zumkeller number if its divisors can be partitioned into two sets with the same sum, which w