ترغب بنشر مسار تعليمي؟ اضغط هنا

Cycles of even-odd drop permutations and continued fractions of Genocchi numbers

117   0   0.0 ( 0 )
 نشر من قبل Jiang Zeng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, Lazar and Wachs (arXiv:1910.07651) showed that the (median) Genocchi numbers play a fundamental role in the study of the homogenized Linial arrangement and obtained two new permutation models (called D-permutations and E-permutations) for (median) Genocchi numbers. They further conjecture that the distributions of cycle numbers over the two models are equal. In a follow-up, Eu et al. (arXiv:2103.09130) further proved the gamma-positivity of the descent polynomials of even-odd descent permutations, which are in bijection with E-permutations by Foatas fundamental transformation. This paper merges the above two papers by considering a general moment sequence which encompasses the number of cycles and number of drops of E-permutations. Using the combinatorial theory of continued fraction, the moment connection enables us to confirm Lazar-Wachs conjecture and obtain a natural $(p,q)$-analogue of Eu et als descent polynomials. Furthermore, we show that the $gamma$-coefficients of our $(p,q)$-analogue of descent polynomials have the same factorization flavor as the $gamma$-coeffcients of Brandens $(p,q)$-Eulerian polynomials.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the ratio of the numbers of odd and even cycles in outerplanar graphs. We verify that the ratio generally diverges to infinity as the order of a graph diverges to infinity. We also give sharp estimations of the ratio for several classes of outerplanar graphs, and obtain a constant upper bound of the ratio for some of them. Furthermore, we consider similar problems in graphs with some pairs of forbidden subgraphs/minors, and propose a challenging problem concerning claw-free graphs.
We prove new upper bounds on the multicolour Ramsey numbers of paths and even cycles. It is well known that $(k-1)n+o(n)leq R_k(P_n)leq R_k(C_n)leq kn+o(n)$. The upper bound was recently improved by Sarkozy who showed that $R_k(C_n)leqleft(k-frac{k}{ 16k^3+1}right)n+o(n)$. Here we show $R_k(C_n) leq (k-frac14)n +o(n)$, obtaining the first improvement to the coefficient of the linear term by an absolute constant.
120 - Guo-Niu Han 2019
The Euler numbers occur in the Taylor expansion of $tan(x)+sec(x)$. Since Stieltjes, continued fractions and Hankel determinants of the even Euler numbers, on the one hand, of the odd Euler numbers, on the other hand, have been widely studied separat ely. However, no Hankel determinants of the (mixed) Euler numbers have been obtained and explicitly calculated. The reason for that is that some Hankel determinants of the Euler numbers are null. This implies that the Jacobi continued fraction of the Euler numbers does not exist. In the present paper, this obstacle is bypassed by using the Hankel continued fraction, instead of the $J$-fraction. Consequently, an explicit formula for the Hankel determinants of the Euler numbers is being derived, as well as a full list of Hankel continued fractions and Hankel determinants involving Euler numbers. Finally, a new $q$-analog of the Euler numbers $E_n(q)$ based on our continued fraction is proposed. We obtain an explicit formula for $E_n(-1)$ and prove a conjecture by R. J. Mathar on these numbers.
110 - Binlong Li , Bo Ning 2019
Let the bipartite Turan number $ex(m,n,H)$ of a graph $H$ be the maximum number of edges in an $H$-free bipartite graph with two parts of sizes $m$ and $n$, respectively. In this paper, we prove that $ex(m,n,C_{2t})=(t-1)n+m-t+1$ for any positive int egers $m,n,t$ with $ngeq mgeq tgeq frac{m}{2}+1$. This confirms the rest of a conjecture of Gy{o}ri cite{G97} (in a stronger form), and improves the upper bound of $ex(m,n,C_{2t})$ obtained by Jiang and Ma cite{JM18} for this range. We also prove a tight edge condition for consecutive even cycles in bipartite graphs, which settles a conjecture in cite{A09}. As a main tool, for a longest cycle $C$ in a bipartite graph, we obtain an estimate on the upper bound of the number of edges which are incident to at most one vertex in $C$. Our two results generalize or sharpen a classical theorem due to Jackson cite{J85} in different ways.
104 - Boris Adamczewski 2005
It is widely believed that the continued fraction expansion of every irrational algebraic number $alpha$ either is eventually periodic (and we know that this is the case if and only if $alpha$ is a quadratic irrational), or it contains arbitrarily la rge partial quotients. Apparently, this question was first considered by Khintchine. A preliminary step towards its resolution consists in providing explicit examples of transcendental continued fractions. The main purpose of the present work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to new combinatorial transcendence criteria recently obtained by Adamczewski and Bugeaud.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا