ﻻ يوجد ملخص باللغة العربية
Management of heat during charging and discharging of Li-ion batteries is critical for their safety, reliability, and performance. Understanding the thermal conductivity of the materials comprising batteries is crucial for controlling the temperature and temperature distribution in batteries. This work provides systemic quantitative measurements of the thermal conductivity of three important classes of solid electrolytes (oxides, sulfides, and halides) over the temperature range 150-350 K. Studies include the oxides Li1.5Al0.5Ge1.5(PO4)3 and Li6.4La3Zr1.4Ta0.6O12, sulfides Li2S-P2S5, Li6PS5Cl, and Na3PS4, and halides Li3InCl6 and Li3YCl6. Thermal conductivities of sulfide and halide solid electrolytes are in the range 0.45-0.70 W m-1 K-1; thermal conductivities of Li6.4La3Zr1.4Ta0.6O12 and Li1.5Al0.5Ge1.5(PO4)3 are 1.4 W m-1 K-1 and 2.2 W m-1 K-1, respectively. For most of the solid electrolytes studied in this work, the thermal conductivity increases with increasing temperature; i.e., the thermal conductivity has a glass-like temperature dependence. The measured room-temperature thermal conductivities agree well with the calculated minimum thermal conductivities indicating the phonon mean-free-paths in these solid electrolytes are close to an atomic spacing. We attribute the low, glass-like thermal conductivity of the solid electrolytes investigated to the combination of their complex crystal structures and the atomic-scale disorder induced by the materials processing methods that are typically needed to produce high ionic conductivities.
Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called pl
It is textbookly regarded that phonons, i.e., an energy quantum of propagating lattice waves, are the main heat carriers in perfect crystals. As a result, in many crystals, e.g., bulk silicon, the temperature-dependent thermal conductivity shows the
Solid-state lithium-ion batteries (SSLIBs) are considered to be the new generation of devices for energy storage due to better performance and safety. Poly (ethylene oxide) (PEO) based material becomes one of the best candidate of solid electrolytes,
The thermal conductivity of solid parahydrogen crystal with methane admixtures has been measured in the temperature range 1.5 to 8 K. Solid samples were grown from the gas mixture at 13 K. Concentration of CH4 admixture molecules in the gas varied fo
Many plastic crystals, molecular solids with long-range, center-of-mass crystalline order but dynamic disorder of the molecular orientations, are known to exhibit exceptionally high ionic conductivity. This makes them promising candidates for applica