ﻻ يوجد ملخص باللغة العربية
Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called plastic crystals (PCs) have been shown to be good candidates combining high conductivity and favourable mechanical properties. PCs are formed by molecules whose orientational degrees of freedom still fluctuate despite the material exhibits a well-defined crystalline lattice. Here we show that the conductivity of Li+ ions in succinonitrile, the most prominent molecular PC electrolyte, can be enhanced by several decades when replacing part of the molecules in the crystalline lattice by larger ones. Dielectric spectroscopy reveals that this is accompanied by a stronger coupling of ionic and reorientational motions. These findings, which can be understood in terms of an optimised revolving door mechanism, open a new path towards the development of better solid-state electrolytes.
Many plastic crystals, molecular solids with long-range, center-of-mass crystalline order but dynamic disorder of the molecular orientations, are known to exhibit exceptionally high ionic conductivity. This makes them promising candidates for applica
Management of heat during charging and discharging of Li-ion batteries is critical for their safety, reliability, and performance. Understanding the thermal conductivity of the materials comprising batteries is crucial for controlling the temperature
A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. Here, we report that the crystalline solid AgCrSe2 has liquid-like thermal conduction. In this compound, Ag atoms exhi
We have performed a dielectric investigation of the ionic charge transport and the relaxation dynamics in plastic-crystalline 1-cyano-adamantane (CNA) and in two mixtures of CNA with the related plastic crystals adamantane or 2-adamantanon. Ionic cha
Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-rang