ترغب بنشر مسار تعليمي؟ اضغط هنا

Superior thermal conductivity of poly (ethylene oxide) for solid-state electrolytes: a molecular dynamics study

76   0   0.0 ( 0 )
 نشر من قبل Han Meng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solid-state lithium-ion batteries (SSLIBs) are considered to be the new generation of devices for energy storage due to better performance and safety. Poly (ethylene oxide) (PEO) based material becomes one of the best candidate of solid electrolytes, while its thermal conductivity is crucial to heat dissipation inside batteries. In this work, we study the thermal conductivity of PEO by molecular dynamics simulation. By enhancing the structure order, thermal conductivity of aligned crystalline PEO is obtained as high as 60 W/m-K at room temperature, which is two orders higher than the value (0.37 W/m-K) of amorphous structure. Interestingly, thermal conductivity of ordered structure shows a significant stepwise negative temperature dependence, which is attributed to the temperature-induced morphology change. Our study offers useful insights into the fundamental mechanisms that govern the thermal conductivity of PEO but not hinder the ionic transport, which can be used for the thermal management and further optimization of high-performance SSLIBs.

قيم البحث

اقرأ أيضاً

Management of heat during charging and discharging of Li-ion batteries is critical for their safety, reliability, and performance. Understanding the thermal conductivity of the materials comprising batteries is crucial for controlling the temperature and temperature distribution in batteries. This work provides systemic quantitative measurements of the thermal conductivity of three important classes of solid electrolytes (oxides, sulfides, and halides) over the temperature range 150-350 K. Studies include the oxides Li1.5Al0.5Ge1.5(PO4)3 and Li6.4La3Zr1.4Ta0.6O12, sulfides Li2S-P2S5, Li6PS5Cl, and Na3PS4, and halides Li3InCl6 and Li3YCl6. Thermal conductivities of sulfide and halide solid electrolytes are in the range 0.45-0.70 W m-1 K-1; thermal conductivities of Li6.4La3Zr1.4Ta0.6O12 and Li1.5Al0.5Ge1.5(PO4)3 are 1.4 W m-1 K-1 and 2.2 W m-1 K-1, respectively. For most of the solid electrolytes studied in this work, the thermal conductivity increases with increasing temperature; i.e., the thermal conductivity has a glass-like temperature dependence. The measured room-temperature thermal conductivities agree well with the calculated minimum thermal conductivities indicating the phonon mean-free-paths in these solid electrolytes are close to an atomic spacing. We attribute the low, glass-like thermal conductivity of the solid electrolytes investigated to the combination of their complex crystal structures and the atomic-scale disorder induced by the materials processing methods that are typically needed to produce high ionic conductivities.
Interfacial thermal transport between electrodes and polymer electrolytes can play a crucial role in the thermal management of solid-state lithium-ion batteries (SLIBs). Modifying the electrode surface with functional molecules can effectively increa se the interfacial thermal conductance (ITC) between electrodes and polymers (e.g., electrolytes, separators); however, how they influence the interfacial thermal transport in SLIBs during charge/discharge remains unknown. In this work, we conduct molecular dynamics (MD) simulations to investigate the ITC between charged electrodes and solid-state polymer electrolytes (SPEs) mixed with ionic liquids (ILs). We find that ILs could self assemble at the electrode surface and act as non-covalent functional molecules that could significantly enhance the interfacial thermal transport during charge/discharge because of the formation of a densely packed cationic or anionic layer at the interface. While the electrostatic interactions between the charged electrode and the IL ions are responsible for forming these dense interfacial layers, the enhancement of ITC is mainly contributed by the increased Lennard-Jones (LJ) interactions between the charged electrodes and ILs. This work may provide useful insights into the understanding of interfacial thermal transport between electrodes and electrolytes of SLIBs during charge/discharge.
Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called pl astic crystals (PCs) have been shown to be good candidates combining high conductivity and favourable mechanical properties. PCs are formed by molecules whose orientational degrees of freedom still fluctuate despite the material exhibits a well-defined crystalline lattice. Here we show that the conductivity of Li+ ions in succinonitrile, the most prominent molecular PC electrolyte, can be enhanced by several decades when replacing part of the molecules in the crystalline lattice by larger ones. Dielectric spectroscopy reveals that this is accompanied by a stronger coupling of ionic and reorientational motions. These findings, which can be understood in terms of an optimised revolving door mechanism, open a new path towards the development of better solid-state electrolytes.
108 - D. Reuter , P. Lunkenheimer , 2019
Many plastic crystals, molecular solids with long-range, center-of-mass crystalline order but dynamic disorder of the molecular orientations, are known to exhibit exceptionally high ionic conductivity. This makes them promising candidates for applica tions as solid-state electrolytes, e.g., in batteries. Interestingly, it was found that the mixing of two different plastic-crystalline materials can considerably enhance the ionic dc conductivity, an important benchmark quantity for electrochemical applications. An example is the admixture of different nitriles to succinonitrile, the latter being one of the most prominent plastic-crystalline ionic conductors. However, until now only few such mixtures were studied. In the present work, we investigate succinonitrile mixed with malononitrile, adiponitrile, and pimelonitrile, to which 1 mol% of Li ions were added. Using differential scanning calorimetry and dielectric spectroscopy, we examine the phase behavior and the dipolar and ionic dynamics of these systems. We especially address the mixing-induced enhancement of the ionic conductivity and the coupling of the translational ionic mobility to the molecular reorientational dynamics, probably arising via a revolving-door mechanism.
Additive manufacturing represents a revolution due to its unique capabilities for freeform fabrication of near net shapes with strong reduction of waste material and capital cost. These unfair advantages are especially relevant for expensive and ener gy-demanding manufacturing processes of advanced ceramics such as Yttria-stabilized Zirconia, the state-of-the-art electrolyte in Solid Oxide Fuel Cell applications. In this study, self-supported electrolytes of yttria-stabilized zirconia have been printed by using a stereolithography three-dimensional printer. Printed electrolytes and complete cells fabricated with cathode and anode layers of lanthanum strontium manganite- and nickel oxide-yttria-stabilized zirconia composites, respectively, were electrochemical characterized showing full functionality. In addition, more complex configurations of the electrolyte have been printed yielding an increase of the performance entirely based on geometrical aspects. Complementary, a numerical model has been developed and validated as predictive tool for designing more advanced configurations that will enable highly performing and fully customized devices in the next future
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا