ﻻ يوجد ملخص باللغة العربية
Recently it was suggested that certain perturbations of integrable spin chains lead to a weak breaking of integrability in the sense that integrability is preserved at the first order in the coupling. Here we examine this claim using level spacing distribution. We find that the volume dependent crossover between integrable and chaotic level spacing statistics which marks the onset of quantum chaotic behaviour, is markedly different for weak vs. strong breaking of integrability. In particular, for the gapless case we find that the crossover coupling as a function of the volume $L$ scales with a $1/L^2$ law for weak breaking as opposed to the $1/L^3$ law previously found for the strong case.
We review recent progress in understanding nearly integrable models within the framework of generalized hydrodynamics (GHD). Integrable systems have infinitely many conserved quantities and stable quasiparticle excitations: when integrability is brok
In this paper, we examine the level spacing distribution $P(S)$ of the rectangular billiard with a single point-like scatterer, which is known as pseudointegrable. It is shown that the observed $P(S)$ is a new type, which is quite different from the
From the random matrix theory all the energy levels should be strongly correlated due to the presence of all off-diagonal entries.In this work we introduce two new statistics to more accurately characterize these long-distance interactions in the dis
We consider quantum quenches in an integrable quantum chain with tuneable-integrability-breaking interactions. In the case where these interactions are weak, we demonstrate that at intermediate times after the quench local observables relax to a pret
We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. A first result is the numerical evidence of the existence of two different kinds of transi