ترغب بنشر مسار تعليمي؟ اضغط هنا

Quench Dynamics in a Model with Tuneable Integrability Breaking

209   0   0.0 ( 0 )
 نشر من قبل Neil Robinson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider quantum quenches in an integrable quantum chain with tuneable-integrability-breaking interactions. In the case where these interactions are weak, we demonstrate that at intermediate times after the quench local observables relax to a prethermalized regime, which can be described by a density matrix that can be viewed as a deformation of a generalized Gibbs ensemble. We present explicit expressions for the approximately conserved charges characterizing this ensemble. We do not find evidence for a crossover from the prethermalized to a thermalized regime on the time scales accessible to us. Increasing the integrability-breaking interactions leads to a behaviour that is compatible with eventual thermalization.



قيم البحث

اقرأ أيضاً

We study the collisionless dynamics of two classes of nonintegrable pairing models. One is a BCS model with separable energy-dependent interactions, the other - a 2D topological superconductor with spin-orbit coupling and a band-splitting external fi eld. The long-time quantum quench dynamics at integrable points of these models are well understood. Namely, the squared magnitude of the time-dependent order parameter $Delta(t)$ can either vanish (Phase I), reach a nonzero constant (Phase II), or periodically oscillate as an elliptic function (Phase III). We demonstrate that nonintegrable models too exhibit some or all of these nonequilibrium phases. Remarkably, elliptic periodic oscillations persist, even though both their amplitude and functional form change drastically with integrability breaking. Striking new phenomena accompany loss of integrability. First, an extremely long time scale emerges in the relaxation to Phase III, such that short-time numerical simulations risk erroneously classifying the asymptotic state. This time scale diverges near integrable points. Second, an entirely new Phase IV of quasiperiodic oscillations of $|Delta|$ emerges in the quantum quench phase diagrams of nonintegrable pairing models. As integrability techniques do not apply for the models we study, we develop the concept of asymptotic self-consistency and a linear stability analysis of the asymptotic phases. With the help of these new tools, we determine the phase boundaries, characterize the asymptotic state, and clarify the physical meaning of the quantum quench phase diagrams of BCS superconductors. We also propose an explanation of these diagrams in terms of bifurcation theory.
We analyze the thermalization properties and the validity of the Eigenstate Thermalization Hypothesis in a generic class of quantum Hamiltonians where the quench parameter explicitly breaks a Z_2 symmetry. Natural realizations of such systems are giv en by random matrices expressed in a block form where the terms responsible for the quench dynamics are the off-diagonal blocks. Our analysis examines both dense and sparse random matrix realizations of the Hamiltonians and the observables. Sparse random matrices may be associated with local quantum Hamiltonians and they show a different spread of the observables on the energy eigenstates with respect to the dense ones. In particular, the numerical data seems to support the existence of rare states, i.e. states where the observables take expectation values which are different compared to the typical ones sampled by the micro-canonical distribution. In the case of sparse random matrices we also extract the finite size behavior of two different time scales associated with the thermalization process.
We review recent progress in understanding nearly integrable models within the framework of generalized hydrodynamics (GHD). Integrable systems have infinitely many conserved quantities and stable quasiparticle excitations: when integrability is brok en, only a few residual conserved quantities survive, eventually leading to thermalization, chaotic dynamics and conventional hydrodynamics. In this review, we summarize recent efforts to take into account small integrability breaking terms, and describe the transition from GHD to standard hydrodynamics. We discuss the current state of the art, with emphasis on weakly inhomogeneous potentials, generalized Boltzmann equations and collision integrals, as well as bound-state recombination effects. We also identify important open questions for future works.
We study the fate of interacting quantum systems which are periodically driven by switching back and forth between two integrable Hamiltonians. This provides an unconventional and tunable way of breaking integrability, in the sense that the strobosco pic time evolution will generally be described by a Floquet Hamiltonian which progressively becomes less integrable as the driving frequency is reduced. Here, we exemplify this idea in spin chains subjected to periodic switching between two integrable anisotropic Heisenberg Hamiltonians. We distinguish the integrability-breaking effects of resonant interactions and perturbative (local) interactions, and illustrate these by contrasting different measures of energy in Floquet states and through a study of level spacing statistics. This scenario is argued to be representative for general driven interacting integrable systems.
We show that for a d-dimensional model in which a quench with a rate tau^{-1} takes the system across a d-m dimensional critical surface, the defect density scales as n sim 1/tau^{m u/(z u +1)}, where u and z are the correlation length and dynamical critical exponents characterizing the critical surface. We explicitly demonstrate that the Kitaev model provides an example of such a scaling with d=2 and m= u=z=1. We also provide the first example of an exact calculation of some multispin correlation functions for a two-dimensional model which can be used to determine the correlation between the defects. We suggest possible experiments to test our theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا