ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak and strong chaos in FPU models and beyond

72   0   0.0 ( 0 )
 نشر من قبل Lapo Casetti
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marco Pettini




اسأل ChatGPT حول البحث

We briefly review some of the most relevant results that our group obtained in the past, while investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. A first result is the numerical evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: i) a Stochasticity Threshold (ST), characterized by a value of the energy per degree of freedom below which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov exponents). It tends to vanish as the number N of degrees of freedom is increased. ii) a Strong Stochasticity Threshold (SST), characterized by a value of the energy per degree of freedom at which a crossover appears between two different power laws of the energy dependence of the largest Lyapunov exponent, which phenomenologically corresponds to the transition between weakly and strongly chaotic regimes. It is stable with N. A second result is the development of a Riemannian geometric theory to explain the origin of Hamiltonian chaos. The starting of this theory has been motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin of chaos in systems of arbitrarily large N, or arbitrarily far from quasi-integrability, or displaying a transition between weak and strong chaos. Finally, a third result stems from the search for the transition between weak and strong chaos in systems other than FPU. Actually, we found that a very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological theory of phase transitions.

قيم البحث

اقرأ أيضاً

We review the occurrence of the patterns of the onset of chaos in low-dimensional nonlinear dissipative systems in leading topics of condensed matter physics and complex systems of various disciplines. We consider the dynamics associated with the att ractors at period-doubling accumulation points and at tangent bifurcations to describe features of glassy dynamics, critical fluctuations and localization transitions. We recall that trajectories pertaining to the routes to chaos form families of time series that are readily transformed into networks via the Horizontal Visibility algorithm, and this in turn facilitates establish connections between entropy and Renormalization Group properties. We discretize the replicator equation of game theory to observe the onset of chaos in familiar social dilemmas, and also to mimic the evolution of high-dimensional ecological models. We describe an analytical framework of nonlinear mappings that reproduce rank distributions of large classes of data (including Zipfs law). We extend the discussion to point out a common circumstance of drastic contraction of configuration space driven by the attractors of these mappings. We mention the relation of generalized entropy expressions with the dynamics along and at the period doubling, intermittency and quasi-periodic routes to chaos. Finally, we refer to additional natural phenomena in complex systems where these conditions may manifest.
Linking thermodynamic variables like temperature $T$ and the measure of chaos, the Lyapunov exponents $lambda$, is a question of fundamental importance in many-body systems. By using nonlinear fluid equations in one and three dimensions, we prove tha t in thermalised flows $lambda propto sqrt{T}$, in agreement with results from frustrated spin systems. This reveals an underlying universality and provides evidence for recent conjectures on the thermal scaling of $lambda$. We also reconcile seemingly disparate effects -- equilibration on one hand and pushing systems out-of-equilibrium on the other -- of many-body chaos by relating $lambda$ to $T$ through the dynamical structures of the flow.
Recently it was suggested that certain perturbations of integrable spin chains lead to a weak breaking of integrability in the sense that integrability is preserved at the first order in the coupling. Here we examine this claim using level spacing di stribution. We find that the volume dependent crossover between integrable and chaotic level spacing statistics which marks the onset of quantum chaotic behaviour, is markedly different for weak vs. strong breaking of integrability. In particular, for the gapless case we find that the crossover coupling as a function of the volume $L$ scales with a $1/L^2$ law for weak breaking as opposed to the $1/L^3$ law previously found for the strong case.
We investigate the onset of chaos in a periodically kicked Dicke model (KDM), using the out-of-time-order correlator (OTOC) as a diagnostic tool, in both the oscillator and the spin subspaces. In the large spin limit, the classical Hamiltonian map is constructed, which allows us to investigate the corresponding phase space dynamics and to compute the Lyapunov exponent. We show that the growth rate of the OTOC for the canonically conjugate coordinates of the oscillator is able to capture the Lyapunov exponent in the chaotic regime. The onset of chaos is further investigated using the saturation value of the OTOC, that can serve as an alternate indicator of chaos in a generic interacting quantum system. This is also supported by a system independent effective random matrix model. We further identify the quantum scars in KDM and detect their dynamical signature by using the OTOC dynamics. The relevance of the present study in the context of ongoing cold atom experiments is also discussed.
Recent years have seen an increasing interest in quantum chaos and related aspects of spatially extended systems, such as spin chains. However, the results are strongly system dependent, generic approaches suggest the presence of many-body localizati on while analytical calculations for certain system classes, here referred to as the ``self-dual case, prove adherence to universal (chaotic) spectral behavior. We address these issues studying the level statistics in the vicinity of the latter case, thereby revealing transitions to many-body localization as well as the appearance of several non-standard random-matrix universality classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا