ترغب بنشر مسار تعليمي؟ اضغط هنا

Fairness On The Ground: Applying Algorithmic Fairness Approaches to Production Systems

336   0   0.0 ( 0 )
 نشر من قبل Sam Corbett-Davies
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many technical approaches have been proposed for ensuring that decisions made by machine learning systems are fair, but few of these proposals have been stress-tested in real-world systems. This paper presents an example of one teams approach to the challenge of applying algorithmic fairness approaches to complex production systems within the context of a large technology company. We discuss how we disentangle normative questions of product and policy design (like, how should the system trade off between different stakeholders interests and needs?) from empirical questions of system implementation (like, is the system achieving the desired tradeoff in practice?). We also present an approach for answering questions of the latter sort, which allows us to measure how machine learning systems and human labelers are making these tradeoffs across different relevant groups. We hope our experience integrating fairness tools and approaches into large-scale and complex production systems will be useful to other practitioners facing similar challenges, and illuminating to academics and researchers looking to better address the needs of practitioners.



قيم البحث

اقرأ أيضاً

180 - Weishen Pan , Sen Cui , Jiang Bian 2021
Algorithmic fairness has aroused considerable interests in data mining and machine learning communities recently. So far the existing research has been mostly focusing on the development of quantitative metrics to measure algorithm disparities across different protected groups, and approaches for adjusting the algorithm output to reduce such disparities. In this paper, we propose to study the problem of identification of the source of model disparities. Unlike existing interpretation methods which typically learn feature importance, we consider the causal relationships among feature variables and propose a novel framework to decompose the disparity into the sum of contributions from fairness-aware causal paths, which are paths linking the sensitive attribute and the final predictions, on the graph. We also consider the scenario when the directions on certain edges within those paths cannot be determined. Our framework is also model agnostic and applicable to a variety of quantitative disparity measures. Empirical evaluations on both synthetic and real-world data sets are provided to show that our method can provide precise and comprehensive explanations to the model disparities.
Algorithmic fairness has attracted significant attention in recent years, with many quantitative measures suggested for characterizing the fairness of different machine learning algorithms. Despite this interest, the robustness of those fairness meas ures with respect to an intentional adversarial attack has not been properly addressed. Indeed, most adversarial machine learning has focused on the impact of malicious attacks on the accuracy of the system, without any regard to the systems fairness. We propose new types of data poisoning attacks where an adversary intentionally targets the fairness of a system. Specifically, we propose two families of attacks that target fairness measures. In the anchoring attack, we skew the decision boundary by placing poisoned points near specific target points to bias the outcome. In the influence attack on fairness, we aim to maximize the covariance between the sensitive attributes and the decision outcome and affect the fairness of the model. We conduct extensive experiments that indicate the effectiveness of our proposed attacks.
94 - Renzhe Xu , Peng Cui , Kun Kuang 2020
Nowadays fairness issues have raised great concerns in decision-making systems. Various fairness notions have been proposed to measure the degree to which an algorithm is unfair. In practice, there frequently exist a certain set of variables we term as fair variables, which are pre-decision covariates such as users choices. The effects of fair variables are irrelevant in assessing the fairness of the decision support algorithm. We thus define conditional fairness as a more sound fairness metric by conditioning on the fairness variables. Given different prior knowledge of fair variables, we demonstrate that traditional fairness notations, such as demographic parity and equalized odds, are special cases of our conditional fairness notations. Moreover, we propose a Derivable Conditional Fairness Regularizer (DCFR), which can be integrated into any decision-making model, to track the trade-off between precision and fairness of algorithmic decision making. Specifically, an adversarial representation based conditional independence loss is proposed in our DCFR to measure the degree of unfairness. With extensive experiments on three real-world datasets, we demonstrate the advantages of our conditional fairness notation and DCFR.
174 - Depeng Xu , Shuhan Yuan , Lu Zhang 2018
Fairness-aware learning is increasingly important in data mining. Discrimination prevention aims to prevent discrimination in the training data before it is used to conduct predictive analysis. In this paper, we focus on fair data generation that ens ures the generated data is discrimination free. Inspired by generative adversarial networks (GAN), we present fairness-aware generative adversarial networks, called FairGAN, which are able to learn a generator producing fair data and also preserving good data utility. Compared with the naive fair data generation models, FairGAN further ensures the classifiers which are trained on generated data can achieve fair classification on real data. Experiments on a real dataset show the effectiveness of FairGAN.
The importance of incorporating ethics and legal compliance into machine-assisted decision-making is broadly recognized. Further, several lines of recent work have argued that critical opportunities for improving data quality and representativeness, controlling for bias, and allowing humans to oversee and impact computational processes are missed if we do not consider the lifecycle stages upstream from model training and deployment. Yet, very little has been done to date to provide system-level support to data scientists who wish to develop and deploy responsible machine learning methods. We aim to fill this gap and present FairPrep, a design and evaluation framework for fairness-enhancing interventions. FairPrep is based on a developer-centered design, and helps data scientists follow best practices in software engineering and machine learning. As part of our contribution, we identify shortcomings in existing empirical studies for analyzing fairness-enhancing interventions. We then show how FairPrep can be used to measure the impact of sound best practices, such as hyperparameter tuning and feature scaling. In particular, our results suggest that the high variability of the outcomes of fairness-enhancing interventions observed in previous studies is often an artifact of a lack of hyperparameter tuning. Further, we show that the choice of a data cleaning method can impact the effectiveness of fairness-enhancing interventions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا