ترغب بنشر مسار تعليمي؟ اضغط هنا

Exacerbating Algorithmic Bias through Fairness Attacks

69   0   0.0 ( 0 )
 نشر من قبل Ninareh Mehrabi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Algorithmic fairness has attracted significant attention in recent years, with many quantitative measures suggested for characterizing the fairness of different machine learning algorithms. Despite this interest, the robustness of those fairness measures with respect to an intentional adversarial attack has not been properly addressed. Indeed, most adversarial machine learning has focused on the impact of malicious attacks on the accuracy of the system, without any regard to the systems fairness. We propose new types of data poisoning attacks where an adversary intentionally targets the fairness of a system. Specifically, we propose two families of attacks that target fairness measures. In the anchoring attack, we skew the decision boundary by placing poisoned points near specific target points to bias the outcome. In the influence attack on fairness, we aim to maximize the covariance between the sensitive attributes and the decision outcome and affect the fairness of the model. We conduct extensive experiments that indicate the effectiveness of our proposed attacks.



قيم البحث

اقرأ أيضاً

180 - Weishen Pan , Sen Cui , Jiang Bian 2021
Algorithmic fairness has aroused considerable interests in data mining and machine learning communities recently. So far the existing research has been mostly focusing on the development of quantitative metrics to measure algorithm disparities across different protected groups, and approaches for adjusting the algorithm output to reduce such disparities. In this paper, we propose to study the problem of identification of the source of model disparities. Unlike existing interpretation methods which typically learn feature importance, we consider the causal relationships among feature variables and propose a novel framework to decompose the disparity into the sum of contributions from fairness-aware causal paths, which are paths linking the sensitive attribute and the final predictions, on the graph. We also consider the scenario when the directions on certain edges within those paths cannot be determined. Our framework is also model agnostic and applicable to a variety of quantitative disparity measures. Empirical evaluations on both synthetic and real-world data sets are provided to show that our method can provide precise and comprehensive explanations to the model disparities.
Machine-Learning-as-a-Service providers expose machine learning (ML) models through application programming interfaces (APIs) to developers. Recent work has shown that attackers can exploit these APIs to extract good approximations of such ML models, by querying them with samples of their choosing. We propose VarDetect, a stateful monitor that tracks the distribution of queries made by users of such a service, to detect model extraction attacks. Harnessing the latent distributions learned by a modified variational autoencoder, VarDetect robustly separates three types of attacker samples from benign samples, and successfully raises an alarm for each. Further, with VarDetect deployed as an automated defense mechanism, the extracted substitute models are found to exhibit poor performance and transferability, as intended. Finally, we demonstrate that even adaptive attackers with prior knowledge of the deployment of VarDetect, are detected by it.
In reward-poisoning attacks against reinforcement learning (RL), an attacker can perturb the environment reward $r_t$ into $r_t+delta_t$ at each step, with the goal of forcing the RL agent to learn a nefarious policy. We categorize such attacks by th e infinity-norm constraint on $delta_t$: We provide a lower threshold below which reward-poisoning attack is infeasible and RL is certified to be safe; we provide a corresponding upper threshold above which the attack is feasible. Feasible attacks can be further categorized as non-adaptive where $delta_t$ depends only on $(s_t,a_t, s_{t+1})$, or adaptive where $delta_t$ depends further on the RL agents learning process at time $t$. Non-adaptive attacks have been the focus of prior works. However, we show that under mild conditions, adaptive attacks can achieve the nefarious policy in steps polynomial in state-space size $|S|$, whereas non-adaptive attacks require exponential steps. We provide a constructive proof that a Fast Adaptive Attack strategy achieves the polynomial rate. Finally, we show that empirically an attacker can find effective reward-poisoning attacks using state-of-the-art deep RL techniques.
In a poisoning attack, an adversary with control over a small fraction of the training data attempts to select that data in a way that induces a corrupted model that misbehaves in favor of the adversary. We consider poisoning attacks against convex m achine learning models and propose an efficient poisoning attack designed to induce a specified model. Unlike previous model-targeted poisoning attacks, our attack comes with provable convergence to {it any} attainable target classifier. The distance from the induced classifier to the target classifier is inversely proportional to the square root of the number of poisoning points. We also provide a lower bound on the minimum number of poisoning points needed to achieve a given target classifier. Our method uses online convex optimization, so finds poisoning points incrementally. This provides more flexibility than previous attacks which require a priori assumption about the number of poisoning points. Our attack is the first model-targeted poisoning attack that provides provable convergence for convex models, and in our experiments, it either exceeds or matches state-of-the-art attacks in terms of attack success rate and distance to the target model.
94 - Renzhe Xu , Peng Cui , Kun Kuang 2020
Nowadays fairness issues have raised great concerns in decision-making systems. Various fairness notions have been proposed to measure the degree to which an algorithm is unfair. In practice, there frequently exist a certain set of variables we term as fair variables, which are pre-decision covariates such as users choices. The effects of fair variables are irrelevant in assessing the fairness of the decision support algorithm. We thus define conditional fairness as a more sound fairness metric by conditioning on the fairness variables. Given different prior knowledge of fair variables, we demonstrate that traditional fairness notations, such as demographic parity and equalized odds, are special cases of our conditional fairness notations. Moreover, we propose a Derivable Conditional Fairness Regularizer (DCFR), which can be integrated into any decision-making model, to track the trade-off between precision and fairness of algorithmic decision making. Specifically, an adversarial representation based conditional independence loss is proposed in our DCFR to measure the degree of unfairness. With extensive experiments on three real-world datasets, we demonstrate the advantages of our conditional fairness notation and DCFR.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا