ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-modal Image Retrieval with Deep Mutual Information Maximization

134   0   0.0 ( 0 )
 نشر من قبل Chunbin Gu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the cross-modal image retrieval, where the inputs contain a source image plus some text that describes certain modifications to this image and the desired image. Prior work usually uses a three-stage strategy to tackle this task: 1) extract the features of the inputs; 2) fuse the feature of the source image and its modified text to obtain fusion feature; 3) learn a similarity metric between the desired image and the source image + modified text by using deep metric learning. Since classical image/text encoders can learn the useful representation and common pair-based loss functions of distance metric learning are enough for cross-modal retrieval, people usually improve retrieval accuracy by designing new fusion networks. However, these methods do not successfully handle the modality gap caused by the inconsistent distribution and representation of the features of different modalities, which greatly influences the feature fusion and similarity learning. To alleviate this problem, we adopt the contrastive self-supervised learning method Deep InforMax (DIM) to our approach to bridge this gap by enhancing the dependence between the text, the image, and their fusion. Specifically, our method narrows the modality gap between the text modality and the image modality by maximizing mutual information between their not exactly semantically identical representation. Moreover, we seek an effective common subspace for the semantically same fusion feature and desired images feature by utilizing Deep InforMax between the low-level layer of the image encoder and the high-level layer of the fusion network. Extensive experiments on three large-scale benchmark datasets show that we have bridged the modality gap between different modalities and achieve state-of-the-art retrieval performance.



قيم البحث

اقرأ أيضاً

Multimodal image-to-image translation (I2IT) aims to learn a conditional distribution that explores multiple possible images in the target domain given an input image in the source domain. Conditional generative adversarial networks (cGANs) are often adopted for modeling such a conditional distribution. However, cGANs are prone to ignore the latent code and learn a unimodal distribution in conditional image synthesis, which is also known as the mode collapse issue of GANs. To solve the problem, we propose a simple yet effective method that explicitly estimates and maximizes the mutual information between the latent code and the output image in cGANs by using a deep mutual information neural estimator in this paper. Maximizing the mutual information strengthens the statistical dependency between the latent code and the output image, which prevents the generator from ignoring the latent code and encourages cGANs to fully utilize the latent code for synthesizing diverse results. Our method not only provides a new perspective from information theory to improve diversity for I2IT but also achieves disentanglement between the source domain content and the target domain style for free.
Cross-modal hashing facilitates mapping of heterogeneous multimedia data into a common Hamming space, which can beutilized for fast and flexible retrieval across different modalities. In this paper, we propose a novel cross-modal hashingarchitecture- deep neural decoder cross-modal hashing (DNDCMH), which uses a binary vector specifying the presence of certainfacial attributes as an input query to retrieve relevant face images from a database. The DNDCMH network consists of two separatecomponents: an attribute-based deep cross-modal hashing (ADCMH) module, which uses a margin (m)-based loss function toefficiently learn compact binary codes to preserve similarity between modalities in the Hamming space, and a neural error correctingdecoder (NECD), which is an error correcting decoder implemented with a neural network. The goal of NECD network in DNDCMH isto error correct the hash codes generated by ADCMH to improve the retrieval efficiency. The NECD network is trained such that it hasan error correcting capability greater than or equal to the margin (m) of the margin-based loss function. This results in NECD cancorrect the corrupted hash codes generated by ADCMH up to the Hamming distance of m. We have evaluated and comparedDNDCMH with state-of-the-art cross-modal hashing methods on standard datasets to demonstrate the superiority of our method.
Several deep supervised hashing techniques have been proposed to allow for efficiently querying large image databases. However, deep supervised image hashing techniques are developed, to a great extent, heuristically often leading to suboptimal resul ts. Contrary to this, we propose an efficient deep supervised hashing algorithm that optimizes the learned codes using an information-theoretic measure, the Quadratic Mutual Information (QMI). The proposed method is adapted to the needs of large-scale hashing and information retrieval leading to a novel information-theoretic measure, the Quadratic Spherical Mutual Information (QSMI). Apart from demonstrating the effectiveness of the proposed method under different scenarios and outperforming existing state-of-the-art image hashing techniques, this paper provides a structured way to model the process of information retrieval and develop novel methods adapted to the needs of each application.
Semantic segmentation is one of the basic, yet essential scene understanding tasks for an autonomous agent. The recent developments in supervised machine learning and neural networks have enjoyed great success in enhancing the performance of the stat e-of-the-art techniques for this task. However, their superior performance is highly reliant on the availability of a large-scale annotated dataset. In this paper, we propose a novel fully unsupervised semantic segmentation method, the so-called Information Maximization and Adversarial Regularization Segmentation (InMARS). Inspired by human perception which parses a scene into perceptual groups, rather than analyzing each pixel individually, our proposed approach first partitions an input image into meaningful regions (also known as superpixels). Next, it utilizes Mutual-Information-Maximization followed by an adversarial training strategy to cluster these regions into semantically meaningful classes. To customize an adversarial training scheme for the problem, we incorporate adversarial pixel noise along with spatial perturbations to impose photometrical and geometrical invariance on the deep neural network. Our experiments demonstrate that our method achieves the state-of-the-art performance on two commonly used unsupervised semantic segmentation datasets, COCO-Stuff, and Potsdam.
112 - Zhongwei Xie , Ling Liu , Lin Li 2021
This paper introduces a two-phase deep feature calibration framework for efficient learning of semantics enhanced text-image cross-modal joint embedding, which clearly separates the deep feature calibration in data preprocessing from training the joi nt embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature calibration by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, NLP methods to produce ranking scores for key terms before generating the key term feature. We leverage wideResNet50 to extract and encode the image category semantics to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature calibration by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, also utilizing the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with the deep feature calibration significantly outperforms the state-of-the-art approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا