ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Image Segmentation by Mutual Information Maximization and Adversarial Regularization

246   0   0.0 ( 0 )
 نشر من قبل Ehsan Mirsadeghi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semantic segmentation is one of the basic, yet essential scene understanding tasks for an autonomous agent. The recent developments in supervised machine learning and neural networks have enjoyed great success in enhancing the performance of the state-of-the-art techniques for this task. However, their superior performance is highly reliant on the availability of a large-scale annotated dataset. In this paper, we propose a novel fully unsupervised semantic segmentation method, the so-called Information Maximization and Adversarial Regularization Segmentation (InMARS). Inspired by human perception which parses a scene into perceptual groups, rather than analyzing each pixel individually, our proposed approach first partitions an input image into meaningful regions (also known as superpixels). Next, it utilizes Mutual-Information-Maximization followed by an adversarial training strategy to cluster these regions into semantically meaningful classes. To customize an adversarial training scheme for the problem, we incorporate adversarial pixel noise along with spatial perturbations to impose photometrical and geometrical invariance on the deep neural network. Our experiments demonstrate that our method achieves the state-of-the-art performance on two commonly used unsupervised semantic segmentation datasets, COCO-Stuff, and Potsdam.

قيم البحث

اقرأ أيضاً

Multimodal image-to-image translation (I2IT) aims to learn a conditional distribution that explores multiple possible images in the target domain given an input image in the source domain. Conditional generative adversarial networks (cGANs) are often adopted for modeling such a conditional distribution. However, cGANs are prone to ignore the latent code and learn a unimodal distribution in conditional image synthesis, which is also known as the mode collapse issue of GANs. To solve the problem, we propose a simple yet effective method that explicitly estimates and maximizes the mutual information between the latent code and the output image in cGANs by using a deep mutual information neural estimator in this paper. Maximizing the mutual information strengthens the statistical dependency between the latent code and the output image, which prevents the generator from ignoring the latent code and encourages cGANs to fully utilize the latent code for synthesizing diverse results. Our method not only provides a new perspective from information theory to improve diversity for I2IT but also achieves disentanglement between the source domain content and the target domain style for free.
243 - Yan Zhang , Ruidan He , Zuozhu Liu 2020
BERT is inefficient for sentence-pair tasks such as clustering or semantic search as it needs to evaluate combinatorially many sentence pairs which is very time-consuming. Sentence BERT (SBERT) attempted to solve this challenge by learning semantical ly meaningful representations of single sentences, such that similarity comparison can be easily accessed. However, SBERT is trained on corpus with high-quality labeled sentence pairs, which limits its application to tasks where labeled data is extremely scarce. In this paper, we propose a lightweight extension on top of BERT and a novel self-supervised learning objective based on mutual information maximization strategies to derive meaningful sentence embeddings in an unsupervised manner. Unlike SBERT, our method is not restricted by the availability of labeled data, such that it can be applied on different domain-specific corpus. Experimental results show that the proposed method significantly outperforms other unsupervised sentence embedding baselines on common semantic textual similarity (STS) tasks and downstream supervised tasks. It also outperforms SBERT in a setting where in-domain labeled data is not available, and achieves performance competitive with supervised methods on various tasks.
133 - Chunbin Gu , Jiajun Bu , Xixi Zhou 2021
In this paper, we study the cross-modal image retrieval, where the inputs contain a source image plus some text that describes certain modifications to this image and the desired image. Prior work usually uses a three-stage strategy to tackle this ta sk: 1) extract the features of the inputs; 2) fuse the feature of the source image and its modified text to obtain fusion feature; 3) learn a similarity metric between the desired image and the source image + modified text by using deep metric learning. Since classical image/text encoders can learn the useful representation and common pair-based loss functions of distance metric learning are enough for cross-modal retrieval, people usually improve retrieval accuracy by designing new fusion networks. However, these methods do not successfully handle the modality gap caused by the inconsistent distribution and representation of the features of different modalities, which greatly influences the feature fusion and similarity learning. To alleviate this problem, we adopt the contrastive self-supervised learning method Deep InforMax (DIM) to our approach to bridge this gap by enhancing the dependence between the text, the image, and their fusion. Specifically, our method narrows the modality gap between the text modality and the image modality by maximizing mutual information between their not exactly semantically identical representation. Moreover, we seek an effective common subspace for the semantically same fusion feature and desired images feature by utilizing Deep InforMax between the low-level layer of the image encoder and the high-level layer of the fusion network. Extensive experiments on three large-scale benchmark datasets show that we have bridged the modality gap between different modalities and achieve state-of-the-art retrieval performance.
We present a novel clustering objective that learns a neural network classifier from scratch, given only unlabelled data samples. The model discovers clusters that accurately match semantic classes, achieving state-of-the-art results in eight unsuper vised clustering benchmarks spanning image classification and segmentation. These include STL10, an unsupervised variant of ImageNet, and CIFAR10, where we significantly beat the accuracy of our closest competitors by 6.6 and 9.5 absolute percentage points respectively. The method is not specialised to computer vision and operates on any paired dataset samples; in our experiments we use random transforms to obtain a pair from each image. The trained network directly outputs semantic labels, rather than high dimensional representations that need external processing to be usable for semantic clustering. The objective is simply to maximise mutual information between the class assignments of each pair. It is easy to implement and rigorously grounded in information theory, meaning we effortlessly avoid degenerate solutions that other clustering methods are susceptible to. In addition to the fully unsupervised mode, we also test two semi-supervised settings. The first achieves 88.8% accuracy on STL10 classification, setting a new global state-of-the-art over all existing methods (whether supervised, semi-supervised or unsupervised). The second shows robustness to 90% reductions in label coverage, of relevance to applications that wish to make use of small amounts of labels. github.com/xu-ji/IIC
Image clustering has recently attracted significant attention due to the increased availability of unlabelled datasets. The efficiency of traditional clustering algorithms heavily depends on the distance functions used and the dimensionality of the f eatures. Therefore, performance degradation is often observed when tackling either unprocessed images or high-dimensional features extracted from processed images. To deal with these challenges, we propose a deep clustering framework consisting of a modified generative adversarial network (GAN) and an auxiliary classifier. The modification employs Sobel operations prior to the discriminator of the GAN to enhance the separability of the learned features. The discriminator is then leveraged to generate representations as the input to an auxiliary classifier. An adaptive objective function is utilised to train the auxiliary classifier for clustering the representations, aiming to increase the robustness by minimizing the divergence of multiple representations generated by the discriminator. The auxiliary classifier is implemented with a group of multiple cluster-heads, where a tolerance hyper-parameter is used to tackle imbalanced data. Our results indicate that the proposed method significantly outperforms state-of-the-art clustering methods on CIFAR-10 and CIFAR-100, and is competitive on the STL10 and MNIST datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا