ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Testing: Sample-Efficient Model Evaluation

91   0   0.0 ( 0 )
 نشر من قبل Jannik Kossen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new framework for sample-efficient model evaluation that we call active testing. While approaches like active learning reduce the number of labels needed for model training, existing literature largely ignores the cost of labeling test data, typically unrealistically assuming large test sets for model evaluation. This creates a disconnect to real applications, where test labels are important and just as expensive, e.g. for optimizing hyperparameters. Active testing addresses this by carefully selecting the test points to label, ensuring model evaluation is sample-efficient. To this end, we derive theoretically-grounded and intuitive acquisition strategies that are specifically tailored to the goals of active testing, noting these are distinct to those of active learning. As actively selecting labels introduces a bias; we further show how to remove this bias while reducing the variance of the estimator at the same time. Active testing is easy to implement and can be applied to any supervised machine learning method. We demonstrate its effectiveness on models including WideResNets and Gaussian processes on datasets including Fashion-MNIST and CIFAR-100.

قيم البحث

اقرأ أيضاً

65 - Avrim Blum , Lunjia Hu 2017
In this work, we give the first algorithms for tolerant testing of nontrivial classes in the active model: estimating the distance of a target function to a hypothesis class C with respect to some arbitrary distribution D, using only a small number o f label queries to a polynomial-sized pool of unlabeled examples drawn from D. Specifically, we show that for the class D of unions of d intervals on the line, we can estimate the error rate of the best hypothesis in the class to an additive error epsilon from only $O(frac{1}{epsilon^6}log frac{1}{epsilon})$ label queries to an unlabeled pool of size $O(frac{d}{epsilon^2}log frac{1}{epsilon})$. The key point here is the number of labels needed is independent of the VC-dimension of the class. This extends the work of Balcan et al. [2012] who solved the non-tolerant testing problem for this class (distinguishing the zero-error case from the case that the best hypothesis in the class has error greater than epsilon). We also consider the related problem of estimating the performance of a given learning algorithm A in this setting. That is, given a large pool of unlabeled examples drawn from distribution D, can we, from only a few label queries, estimate how well A would perform if the entire dataset were labeled? We focus on k-Nearest Neighbor style algorithms, and also show how our results can be applied to the problem of hyperparameter tuning (selecting the best value of k for the given learning problem).
Machine learning models $-$ now commonly developed to screen, diagnose, or predict health conditions $-$ are evaluated with a variety of performance metrics. An important first step in assessing the practical utility of a model is to evaluate its ave rage performance over an entire population of interest. In many settings, it is also critical that the model makes good predictions within predefined subpopulations. For instance, showing that a model is fair or equitable requires evaluating the models performance in different demographic subgroups. However, subpopulation performance metrics are typically computed using only data from that subgroup, resulting in higher variance estimates for smaller groups. We devise a procedure to measure subpopulation performance that can be more sample-efficient than the typical subsample estimates. We propose using an evaluation model $-$ a model that describes the conditional distribution of the predictive model score $-$ to form model-based metric (MBM) estimates. Our procedure incorporates model checking and validation, and we propose a computationally efficient approximation of the traditional nonparametric bootstrap to form confidence intervals. We evaluate MBMs on two main tasks: a semi-synthetic setting where ground truth metrics are available and a real-world hospital readmission prediction task. We find that MBMs consistently produce more accurate and lower variance estimates of model performance for small subpopulations.
We propose a two-sample testing procedure based on learned deep neural network representations. To this end, we define two test statistics that perform an asymptotic location test on data samples mapped onto a hidden layer. The tests are consistent a nd asymptotically control the type-1 error rate. Their test statistics can be evaluated in linear time (in the sample size). Suitable data representations are obtained in a data-driven way, by solving a supervised or unsupervised transfer-learning task on an auxiliary (potentially distinct) data set. If no auxiliary data is available, we split the data into two chunks: one for learning representations and one for computing the test statistic. In experiments on audio samples, natural images and three-dimensional neuroimaging data our tests yield significant decreases in type-2 error rate (up to 35 percentage points) compared to state-of-the-art two-sample tests such as kernel-methods and classifier two-sample tests.
93 - Feng Liu , Wenkai Xu , Jie Lu 2021
Modern kernel-based two-sample tests have shown great success in distinguishing complex, high-dimensional distributions with appropriate learned kernels. Previous work has demonstrated that this kernel learning procedure succeeds, assuming a consider able number of observed samples from each distribution. In realistic scenarios with very limited numbers of data samples, however, it can be challenging to identify a kernel powerful enough to distinguish complex distributions. We address this issue by introducing the problem of meta two-sample testing (M2ST), which aims to exploit (abundant) auxiliary data on related tasks to find an algorithm that can quickly identify a powerful test on new target tasks. We propose two specific algorithms for this task: a generic scheme which improves over baselines and amore tailored approach which performs even better. We provide both theoretical justification and empirical evidence that our proposed meta-testing schemes out-perform learning kernel-based tests directly from scarce observations, and identify when such schemes will be successful.
A central question for active learning (AL) is: what is the optimal selection? Defining optimality by classifier loss produces a new characterisation of optimal AL behaviour, by treating expected loss reduction as a statistical target for estimation. This target forms the basis of model retraining improvement (MRI), a novel approach providing a statistical estimation framework for AL. This framework is constructed to address the central question of AL optimality, and to motivate the design of estimation algorithms. MRI allows the exploration of optimal AL behaviour, and the examination of AL heuristics, showing precisely how they make sub-optimal selections. The abstract formulation of MRI is used to provide a new guarantee for AL, that an unbiased MRI estimator should outperform random selection. This MRI framework reveals intricate estimation issues that in turn motivate the construction of new statistical AL algorithms. One new algorithm in particular performs strongly in a large-scale experimental study, compared to standard AL methods. This competitive performance suggests that practical efforts to minimise estimation bias may be important for AL applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا