ﻻ يوجد ملخص باللغة العربية
In this work, we give the first algorithms for tolerant testing of nontrivial classes in the active model: estimating the distance of a target function to a hypothesis class C with respect to some arbitrary distribution D, using only a small number of label queries to a polynomial-sized pool of unlabeled examples drawn from D. Specifically, we show that for the class D of unions of d intervals on the line, we can estimate the error rate of the best hypothesis in the class to an additive error epsilon from only $O(frac{1}{epsilon^6}log frac{1}{epsilon})$ label queries to an unlabeled pool of size $O(frac{d}{epsilon^2}log frac{1}{epsilon})$. The key point here is the number of labels needed is independent of the VC-dimension of the class. This extends the work of Balcan et al. [2012] who solved the non-tolerant testing problem for this class (distinguishing the zero-error case from the case that the best hypothesis in the class has error greater than epsilon). We also consider the related problem of estimating the performance of a given learning algorithm A in this setting. That is, given a large pool of unlabeled examples drawn from distribution D, can we, from only a few label queries, estimate how well A would perform if the entire dataset were labeled? We focus on k-Nearest Neighbor style algorithms, and also show how our results can be applied to the problem of hyperparameter tuning (selecting the best value of k for the given learning problem).
We introduce a new framework for sample-efficient model evaluation that we call active testing. While approaches like active learning reduce the number of labels needed for model training, existing literature largely ignores the cost of labeling test
We present an approach to analyze $C^1(mathbb{R}^m)$ functions that addresses limitations present in the Active Subspaces (AS) method of Constantine et al.(2015; 2014). Under appropriate hypotheses, our Active Manifolds (AM) method identifies a 1-D c
The $k$-sample testing problem tests whether or not $k$ groups of data points are sampled from the same distribution. Multivariate analysis of variance (MANOVA) is currently the gold standard for $k$-sample testing but makes strong, often inappropria
We propose a two-sample testing procedure based on learned deep neural network representations. To this end, we define two test statistics that perform an asymptotic location test on data samples mapped onto a hidden layer. The tests are consistent a
Complex data structures such as time series are increasingly present in modern data science problems. A fundamental question is whether two such time-series are statistically dependent. Many current approaches make parametric assumptions on the rando