ترغب بنشر مسار تعليمي؟ اضغط هنا

A Complete 16 micron-Selected Galaxy Sample at $zsim1$: Mid-infrared Spectral Energy Distributions

121   0   0.0 ( 0 )
 نشر من قبل Steven Willner
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a complete, flux-density-limited sample of galaxies at redshift $0.8 < z < 1.3$ selected at 16 micron. At the selection wavelength near 8 micron rest, the observed emission comes both from dust heated by intense star formation and from active galactic nuclei (AGNs). Fitting the spectral energy distributions (SEDs) of the sample galaxies to local-galaxy templates reveals that more than half the galaxies have SEDs dominated by star formation. About one sixth of the galaxy SEDs are dominated by an AGN, and nearly all the rest of the SEDs are composite. Comparison with X-ray and far-infrared observations shows that combinations of luminosities at rest-frame 4.5 and 8 micron give good measures of both AGN luminosity and star-formation rate. The sample galaxies mostly follow the established star-forming main sequence for $z=1$ galaxies, but of the galaxies more than 0.5 dex above that main sequence, more than half have AGN-type SEDs. Similarly, the most luminous AGNs tend to have higher star-formation rates than the main sequence value. Galaxies with stellar masses $>$10$^{11}$,Msun are unlikely to host an AGN. About 1% of the sample galaxies show an SED with dust emission typical of neither star formation nor an AGN.



قيم البحث

اقرأ أيضاً

149 - Mark Lacy 2012
We present preliminary results on fitting of SEDs to 142 z>1 quasars selected in the mid-infrared. Our quasar selection finds objects ranging in extinction from highly obscured, type-2 quasars, through more lightly reddened type-1 quasars and normal type-1s. We find a weak tendency for the objects with the highest far-infrared emission to be obscured quasars, but no bulk systematic offset between the far-infrared properties of dusty and normal quasars as might be expected in the most naive evolutionary schemes. The hosts of the type-2 quasars have stellar masses comparable to those of radio galaxies at similar redshifts. Many of the type-1s, and possibly one of the type-2s require a very hot dust component in addition to the normal torus emission.
We present a catalog of mid-infrared (MIR) spectra of 150 infrared (IR) luminous galaxies in the Spitzer extragalactic first look survey obtained with IRS on board Spitzer. The sample is selected to be brighter than ~0.9 mJy at 24 micron and it has a z distribution in the range [0.3,3.5] with a peak at z=1. It primarily comprises ultraluminous IR galaxies at z>1 and luminous IR galaxies at z<1, as estimated from their monochromatic 14 micron luminosities. The number of sources with spectra that are dominated by an active galactic nucleus (AGN) continuum is 49, while 39 sources have strong, star-formation related features. For this classification, we used the equivalent width (EW) of the 11.3 micron polycyclic aromatic hydrocarbon (PAH) feature. Several intermediate/high z starbursts have higher PAH EW than local ULIRGs. An increase in the AGN activity is observed with increasing z and luminosity, based on the decreasing EW of PAHs and the increasing [NeIII]/[NeII] ratio. Spectral stacking leads to the detection of the 3.3 micron PAH, the H2 0-0 S(1) and S(3) lines, and the [NeV] line. We observe differences in the flux ratios of PAHs in the stacked spectra of IR-luminous galaxies with z or luminosity, which are not due to extinction effects. When placing the observed galaxies on IR color-color diagrams, we find that the wedge defining AGN comprises most sources with continuum-dominated spectra, but also contains many starbursts. The comparison of the 11.3 micron PAH EW and the H-band effective radius, measured from HST data, indicates that sources with EW>2 micron, are typically more extended than ~3 kpc. However, there is no strong correlation between the MIR spectral type and the near-IR extent of the sources. [Abridged].
The mid-far-infrared spectral energy distributions (SEDs) of 83 active galaxies, mostly Seyfert galaxies, selected from the extended 12 micron sample are presented. The data were collected using all three instruments, IRAC, IRS, and MIPS, aboard the Spitzer Space Telescope. The IRS data were obtained in spectral mapping mode, and the photometric data from IRAC and IRS were extracted from matched, 20 arcsec diameter circular apertures. The MIPS data were obtained in SED mode, providing very low resolution spectroscopy (R ~ 20) between ~ 55 and 90 microns in a larger, 20 by 30 arcsec synthetic aperture. We further present the data from a spectral decomposition of the SEDs, including equivalent widths and fluxes of key emission lines; silicate 10 and 18 micron emission and absorption strengths; IRAC magnitudes; and mid-far infrared spectral indices. Finally, we examine the SEDs averaged within optical classifications of activity. We find that the infrared SEDs of Seyfert 1s and Seyfert 2s with hidden broad line regions (HBLR, as revealed by spectropolarimetry or other technique) are qualitatively similar, except that Seyfert 1s show silicate emission and HBLR Seyfert 2s show silicate absorption. The infrared SEDs of other classes with the 12 micron sample, including Seyfert 1.8-1.9, non-HBLR Seyfert 2 (not yet shown to hide a type 1 nucleus), LINER and HII galaxies, appear to be dominated by star-formation, as evidenced by blue IRAC colors, strong PAH emission, and strong far-infrared continuum emission, measured relative to mid-infrared continuum emission.
We present a large robust sample of 1503 reliable and unconfused 70microm selected sources from the multiwavelength data set of the Cosmic Evolution Survey (COSMOS). Using the Spitzer IRAC and MIPS photometry, we estimate the total infrared luminosit y, L_IR (8--1000 microns), by finding the best fit template from several different template libraries. The long wavelength 70 and 160 micron data allow us to obtain a reliable estimate of L_IR, accurate to within 0.2 and 0.05 dex, respectively. The 70 micron data point enables a significant improvement over the luminosity estimates possible with only a 24 micron detection. The full sample spans a wide range in L_IR, L_IR ~ 10^8-10^14 L_sun, with a median luminosity of 10^11.4 L_sun. We identify a total of 687 luminous, 303 ultraluminous, and 31 hyperluminous infrared galaxies (LIRGs, ULIRGs, and HyLIRGs) over the redshift range 0.01<z<3.5 with a median redshift of 0.5. Presented here are the full spectral energy distributions for each of the sources compiled from the extensive multiwavelength data set from the ultraviolet (UV) to the far-infrared (FIR). Using SED fits we find possible evidence for a subset of cooler ultraluminous objects than observed locally. However, until direct observations at longer wavelengths are obtained, the peak of emission and the dust temperature cannot be well constrained. We use these SEDs, along with the deep radio and X-ray coverage of the field, to identify a large sample of candidate active galactic nuclei (AGN). We find that the fraction of AGN increases strongly with L_IR, as it does in the local universe, and that nearly 70% of ULIRGs and all HyLIRGs likely host a powerful AGN.
We present a study of a large, statistically complete sample of star-forming dwarf galaxies using mid-infrared observations from the {it Spitzer Space Telescope}. The relationships between metallicity, star formation rate (SFR) and mid-infrared color in these systems show that the galaxies span a wide range of properties. However, the galaxies do show a deficit of 8.0 um polycyclic aromatic hydrocarbon emission as is apparent from the median 8.0 um luminosity which is only 0.004 lstarf while the median $B$-band luminosity is 0.05 lstarb. Despite many of the galaxies being 8.0 um deficient, there is about a factor of 4 more extremely red galaxies in the [3.6] $-$ [8.0] color than for a sample of normal galaxies with similar optical colors. We show correlations between the [3.6] $-$ [8.0] color and luminosity, metallicity, and to a lesser extent SFRs that were not evident in the original, smaller sample studied previously. The luminosity--metallicity relation has a flatter slope for dwarf galaxies as has been indicated by previous work. We also show a relationship between the 8.0 um luminosity and the metallicity of the galaxy which is not expected given the competing effects (stellar mass, stellar population age, and the hardness of the radiation field) that influence the 8.0 um emission. This larger sample plus a well-defined selection function also allows us to compute the 8.0 um luminosity function and compare it with the one for the local galaxy population. Our results show that below 10$^{9}$ $L$solar, nearly all the 8.0 um luminosity density of the local universe arises from dwarf galaxies that exhibit strong ha emission -- i.e., 8.0 um and ha selection identify similar galaxy populations despite the deficit of 8.0 um emission observed in these dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا