ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral energy distributions of quasars selected in the mid-infrared

149   0   0.0 ( 0 )
 نشر من قبل Mark Lacy
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mark Lacy




اسأل ChatGPT حول البحث

We present preliminary results on fitting of SEDs to 142 z>1 quasars selected in the mid-infrared. Our quasar selection finds objects ranging in extinction from highly obscured, type-2 quasars, through more lightly reddened type-1 quasars and normal type-1s. We find a weak tendency for the objects with the highest far-infrared emission to be obscured quasars, but no bulk systematic offset between the far-infrared properties of dusty and normal quasars as might be expected in the most naive evolutionary schemes. The hosts of the type-2 quasars have stellar masses comparable to those of radio galaxies at similar redshifts. Many of the type-1s, and possibly one of the type-2s require a very hot dust component in addition to the normal torus emission.



قيم البحث

اقرأ أيضاً

We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 <= z <= 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame ~0.1-5 mum spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line-of-sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR bump, characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.
245 - D. Farrah 2010
We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with the Spitzer space telescope. The spectra span a range of shapes, from hot dust dominated AGN with silicate emission at 9.7 microns, to moderately obscured starbursts with stro ng Polycyclic Aromatic Hydrocarbon (PAH) emission. The spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen in any QSO at any redshift, implying that the starburst dominates the mid-IR emission with an associated star formation rate of order 2700 solar masses per year. With the caveats that our sample is small and not robustly selected, we combine our mid-IR spectral diagnostics with previous observations to propose that FeLoBAL QSOs are at least largely comprised of systems in which (a) a merger driven starburst is ending, (b) a luminous AGN is in the last stages of burning through its surrounding dust, and (c) which we may be viewing over a restricted line of sight range.
We present Spitzer InfraRed Spectrograph (IRS) low-resolution spectra of 16 spectroscopically selected post-starburst quasars (PSQs) at z ~ 0.3. The optical spectra of these broad-lined active galactic nuclei (AGNs) simultaneously show spectral signa tures of massive intermediate-aged stellar populations making them good candidates for studying the connections between AGNs and their hosts. The resulting spectra show relatively strong polycyclic aromatic hydrocarbon (PAH) emission features at 6.2 and 11.3micron and a very weak silicate feature, indicative of ongoing star formation and low dust obscuration levels for the AGNs. We find that the mid-infrared composite spectrum of PSQs has spectral properties between ULIRGs and QSOs, suggesting that PSQs are hybrid AGN and starburst systems as also seen in their optical spectra. We also find that PSQs in early-type host galaxies tend to have relatively strong AGN activities, while those in spiral hosts have stronger PAH emission, indicating more star formation.
We describe a complete, flux-density-limited sample of galaxies at redshift $0.8 < z < 1.3$ selected at 16 micron. At the selection wavelength near 8 micron rest, the observed emission comes both from dust heated by intense star formation and from ac tive galactic nuclei (AGNs). Fitting the spectral energy distributions (SEDs) of the sample galaxies to local-galaxy templates reveals that more than half the galaxies have SEDs dominated by star formation. About one sixth of the galaxy SEDs are dominated by an AGN, and nearly all the rest of the SEDs are composite. Comparison with X-ray and far-infrared observations shows that combinations of luminosities at rest-frame 4.5 and 8 micron give good measures of both AGN luminosity and star-formation rate. The sample galaxies mostly follow the established star-forming main sequence for $z=1$ galaxies, but of the galaxies more than 0.5 dex above that main sequence, more than half have AGN-type SEDs. Similarly, the most luminous AGNs tend to have higher star-formation rates than the main sequence value. Galaxies with stellar masses $>$10$^{11}$,Msun are unlikely to host an AGN. About 1% of the sample galaxies show an SED with dust emission typical of neither star formation nor an AGN.
59 - M. Symeonidis 2006
We present 0.5 -160 micron Spectral Energy Distributions (SEDs) of galaxies, detected at 70microns with the Multiband Imaging Photometer for Spitzer (MIPS), using broadband imaging data from Spitzer and ground-based telescopes. Spectroscopic redshift s, in the range 0.2<z<1.5, have been measured as part of the Deep Extragalactic Evolutionary Probe2 (DEEP2) project. Based on the SEDs we explore the nature and physical properties of the sources. Using the optical spectra we derive Hbeta and [OII]-based Star Formation Rates (SFR) which are 10-100 times lower than SFR estimates based on IR and radio. The median offset in SFR between optical and IR is reduced by a factor of ~3 when we apply a typical extinction corrections. We investigate mid-to-far infrared correlations for low redshift (>0.5) and high redshift (0.5<z<1.2) bins. Using this unique ``far-infrared selected sample we derive an empirical mid to far-infrared relationship that can be used to estimate the infrared energy budget of galaxies in the high-redshift universe. Our sample can be used as a template to translate far-infrared luminosities into bolometric luminosities for high redshift objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا