ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared Spectral Energy Distributions of Seyfert Galaxies: Spitzer Space Telescope Observations of the 12 micron Sample of Active Galaxies

118   0   0.0 ( 0 )
 نشر من قبل Jack F. Gallimore
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mid-far-infrared spectral energy distributions (SEDs) of 83 active galaxies, mostly Seyfert galaxies, selected from the extended 12 micron sample are presented. The data were collected using all three instruments, IRAC, IRS, and MIPS, aboard the Spitzer Space Telescope. The IRS data were obtained in spectral mapping mode, and the photometric data from IRAC and IRS were extracted from matched, 20 arcsec diameter circular apertures. The MIPS data were obtained in SED mode, providing very low resolution spectroscopy (R ~ 20) between ~ 55 and 90 microns in a larger, 20 by 30 arcsec synthetic aperture. We further present the data from a spectral decomposition of the SEDs, including equivalent widths and fluxes of key emission lines; silicate 10 and 18 micron emission and absorption strengths; IRAC magnitudes; and mid-far infrared spectral indices. Finally, we examine the SEDs averaged within optical classifications of activity. We find that the infrared SEDs of Seyfert 1s and Seyfert 2s with hidden broad line regions (HBLR, as revealed by spectropolarimetry or other technique) are qualitatively similar, except that Seyfert 1s show silicate emission and HBLR Seyfert 2s show silicate absorption. The infrared SEDs of other classes with the 12 micron sample, including Seyfert 1.8-1.9, non-HBLR Seyfert 2 (not yet shown to hide a type 1 nucleus), LINER and HII galaxies, appear to be dominated by star-formation, as evidenced by blue IRAC colors, strong PAH emission, and strong far-infrared continuum emission, measured relative to mid-infrared continuum emission.



قيم البحث

اقرأ أيضاً

We present spectroscopy of emission lines for 81 Seyfert 1 and 104 Seyfert 2 galaxies in the IRAS 12$mu$m galaxy sample. We analyzed the emission-line luminosity functions, reddening, and other gas diagnostics. The narrow-line regions (NLR) of Sy1 an d 2 galaxies do not significantly differ from each other in most of these diagnostics. Combining the H$alpha$/H$beta$ ratio with a new reddening indicator-the [SII]6720/[OII]3727 ratio, we find the average $E(B-V)=0.49pm0.35$ for Sy1s and $0.52pm0.26$ for Sy2s. The NLR of Sy1 galaxies has only marginally higher ionization than the Sy2s. Our sample includes 22 Sy1.9s and 1.8s. In their narrow lines, these low-luminosity Seyferts are more similar to the Sy2s than the Sy1s. We construct a BPT diagram, and include the Sy1.8s and 1.9s. They overlap the region occupied by the Sy2s. The C IV equivalent width correlates more strongly with [O III]/H$beta$ than with UV luminosity. The Sy1 and Sy2 luminosity functions of [OII]3727 and [OIII]5007 are indistinguishable. Unlike the LFs of Seyfert galaxies measured by SDSS, ours are nearly flat at low L. The larger number of faint Sloan AGN is attributable to their inclusion of weakly emitting LINERs and H II+AGN composite nuclei, which do not meet our classification criteria for Seyferts. An Appendix investigates which emission line luminosities provide the most reliable measures of the total non-stellar luminosity. The hard X-ray or near-ultraviolet continuum luminosity can be crudely predicted from either the [O III]5007 luminosity, or the combination of [O III]+H$beta$, or [N II]+H$alpha$ lines, with a scatter of $pm,4$ times for the Sy1s and $pm,10$ times for the Sy2s. The latter two hybrid (NLR+BLR) indicators have the advantage of predicting the same HX luminosity independent of Seyfert type.
The nearby universe remains the best laboratory to understand physical properties of galaxies and is a reference for any comparison with high redshift observations. The all sky (or very large) surveys performed from the ultraviolet (UV) to the far-in frared (far-IR) gives us large datasets with a very large wavelength coverage to perform a reference study. We want to investigate dust attenuation characteristics as well as star formation rate (SFR) calibrations on a sample of nearby galaxies observed over 13 bands from 0.15 to 160 microns. A sample of 363 galaxies is built from the AKARI /FIS all sky survey cross-correlated with SDSS and GALEX surveys. Broad band spectral energy distributions are fitted with the CIGALE code optimized to analyze variations in dust attenuation curves and SFR measurements and based on an energetic budget between the stellar and dust emission. Our galaxy sample is primarily selected in far-IR and mostly constituted of massive, actively star forming galaxies. There is some evidence for a dust attenuation law slightly steeper than that used for starburst galaxies but we are unable to constrain the presence or not of a bump at 220 nm. We confirm that a time dependent dust attenuation is necessary to perform the best fits. Various calibrations of the dust attenuation in the UV as a function of UV-optical colours are discussed. A calibration of the current star formation rate combining UV and total IR emissions is proposed with an accurate estimation of dust heating by old stars: for the whole sample 17 % of the total dust luminosity is not related to the recent star formation
Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.
Luminous and ultraluminous infrared galaxies ((U)LIRGs) are the most extreme star forming galaxies in the universe. The local (U)LIRGs provide a unique opportunity to study their multi-wavelength properties in detail for comparison to their more nume rous counterparts at high redshifts. We present common large aperture photometry at radio through X-ray wavelengths, and spectral energy distributions (SEDs) for a sample of 53 nearby LIRGs and 11 ULIRGs spanning log (LIR/Lsun) = 11.14-12.57 from the flux-limited Great Observatories All-sky LIRG Survey (GOALS). The SEDs for all objects are similar in that they show a broad, thermal stellar peak and a dominant FIR thermal dust peak, where nuLnu(60um) / nuLnu(V) increases from ~2-30 with increasing LIR. When normalized at IRAS-60um, the largest range in the luminosity ratio, R(lambda)=log[nuLnu(lambda)/nuLnu(60um)] observed over the full sample is seen in the Hard X-rays (HX=2-10 keV). A small range is found in the Radio (1.4GHz), where the mean ratio is largest. Total infrared luminosities, LIR(8-1000um), dust temperatures, and dust masses were computed from fitting thermal dust emission modified blackbodies to the mid-infrared (MIR) through submillimeter SEDs. The new results reflect an overall ~0.02 dex lower luminosity than the original IRAS values. Total stellar masses were computed by fitting stellar population synthesis models to the observed near-infrared (NIR) through ultraviolet (UV) SEDs. Mean stellar masses are found to be log(M/Msun) = 10.79+/-0.40. Star formation rates have been determined from the infrared (SFR_IR~45Msun/yr) and from the monochromatic UV luminosities (SFR_UV~1.3Msun/yr), respectively. Multiwavelength AGN indicators have be used to select putative AGN: about 60% of the ULIRGs would have been classified as an AGN by at least one of the selection criteria.
The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out a comprehensive multi-wavelength survey on a sample of 75 nearby galaxies. The 1-850um spectral energy distributions are presented using broadband imaging data from Spitzer, 2MASS, I SO, IRAS, and SCUBA. The infrared colors derived from the globally-integrated Spitzer data are generally consistent with the previous generation of models that were developed based on global data for normal star-forming galaxies, though significant deviations are observed. Spitzers excellent sensitivity and resolution also allow a detailed investigation of the infrared spectral energy distributions for various locations within the three large, nearby galaxies NGC3031 (M81), NGC5194 (M51), and NGC7331. Strong correlations exist between the local star formation rate and the infrared colors f_nu(70um)/f_nu(160um) and f_nu(24um)/f_nu(160um), suggesting that the 24 and 70um emission are useful tracers of the local star formation activity level. Preliminary evidence indicates that variations in the 24um emission, and not variations in the emission from polycyclic aromatic hydrocarbons at 8um, drive the variations in the f_nu(8.0um)/f_nu(24um) colors within NGC3031, NGC5194, and NGC7331. If the galaxy-to-galaxy variations in spectral energy distributions seen in our sample are representative of the range present at high redshift then extrapolations of total infrared luminosities and star formation rates from the observed 24um flux will be uncertain at the factor-of-five level (total range). The corresponding uncertainties using the redshifted 8.0um flux (e.g. observed 24um flux for a z=2 source) are factors of 10-20. Considerable caution should be used when interpreting such extrapolated infrared luminosities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا