ترغب بنشر مسار تعليمي؟ اضغط هنا

A Simple and Efficient Multi-task Network for 3D Object Detection and Road Understanding

173   0   0.0 ( 0 )
 نشر من قبل Di Feng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Detecting dynamic objects and predicting static road information such as drivable areas and ground heights are crucial for safe autonomous driving. Previous works studied each perception task separately, and lacked a collective quantitative analysis. In this work, we show that it is possible to perform all perception tasks via a simple and efficient multi-task network. Our proposed network, LidarMTL, takes raw LiDAR point cloud as inputs, and predicts six perception outputs for 3D object detection and road understanding. The network is based on an encoder-decoder architecture with 3D sparse convolution and deconvolution operations. Extensive experiments verify the proposed method with competitive accuracies compared to state-of-the-art object detectors and other task-specific networks. LidarMTL is also leveraged for online localization. Code and pre-trained model have been made available at https://github.com/frankfengdi/LidarMTL.



قيم البحث

اقرأ أيضاً

Point clouds and RGB images are naturally complementary modalities for 3D visual understanding - the former provides sparse but accurate locations of points on objects, while the latter contains dense color and texture information. Despite this poten tial for close sensor fusion, many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data. This separated training scheme results in potentially sub-optimal performance and prevents 3D tasks from being used to benefit 2D tasks that are often useful on their own. To provide a more integrated approach, we propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions, which are then used to further refine the 3D boxes. We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance. Moreover, to prevent the 3D module from over-relying on the overfitted 2D predictions, we propose a dual-head 2D segmentation training and inference scheme, allowing the 2nd 3D module to learn to interpret imperfect 2D segmentation predictions. Evaluating our model on the challenging SUN RGB-D dataset, we improve upon state-of-the-art results of both single modality and fusion networks by a large margin ($textbf{+3.8}$ [email protected]). Code will be released $href{https://github.com/Divadi/MTC_RCNN}{text{here.}}$
3D object detection is an important module in autonomous driving and robotics. However, many existing methods focus on using single frames to perform 3D detection, and do not fully utilize information from multiple frames. In this paper, we present 3 D-MAN: a 3D multi-frame attention network that effectively aggregates features from multiple perspectives and achieves state-of-the-art performance on Waymo Open Dataset. 3D-MAN first uses a novel fast single-frame detector to produce box proposals. The box proposals and their corresponding feature maps are then stored in a memory bank. We design a multi-view alignment and aggregation module, using attention networks, to extract and aggregate the temporal features stored in the memory bank. This effectively combines the features coming from different perspectives of the scene. We demonstrate the effectiveness of our approach on the large-scale complex Waymo Open Dataset, achieving state-of-the-art results compared to published single-frame and multi-frame methods.
3D object detection based on LiDAR-camera fusion is becoming an emerging research theme for autonomous driving. However, it has been surprisingly difficult to effectively fuse both modalities without information loss and interference. To solve this i ssue, we propose a single-stage multi-view fusion framework that takes LiDAR birds-eye view, LiDAR range view and camera view images as inputs for 3D object detection. To effectively fuse multi-view features, we propose an attentive pointwise fusion (APF) module to estimate the importance of the three sources with attention mechanisms that can achieve adaptive fusion of multi-view features in a pointwise manner. Furthermore, an attentive pointwise weighting (APW) module is designed to help the network learn structure information and point feature importance with two extra tasks, namely, foreground classification and center regression, and the predicted foreground probability is used to reweight the point features. We design an end-to-end learnable network named MVAF-Net to integrate these two components. Our evaluations conducted on the KITTI 3D object detection datasets demonstrate that the proposed APF and APW modules offer significant performance gains. Moreover, the proposed MVAF-Net achieves the best performance among all single-stage fusion methods and outperforms most two-stage fusion methods, achieving the best trade-off between speed and accuracy on the KITTI benchmark.
3D multi-object detection and tracking are crucial for traffic scene understanding. However, the community pays less attention to these areas due to the lack of a standardized benchmark dataset to advance the field. Moreover, existing datasets (e.g., KITTI) do not provide sufficient data and labels to tackle challenging scenes where highly interactive and occluded traffic participants are present. To address the issues, we present the Honda Research Institute 3D Dataset (H3D), a large-scale full-surround 3D multi-object detection and tracking dataset collected using a 3D LiDAR scanner. H3D comprises of 160 crowded and highly interactive traffic scenes with a total of 1 million labeled instances in 27,721 frames. With unique dataset size, rich annotations, and complex scenes, H3D is gathered to stimulate research on full-surround 3D multi-object detection and tracking. To effectively and efficiently annotate a large-scale 3D point cloud dataset, we propose a labeling methodology to speed up the overall annotation cycle. A standardized benchmark is created to evaluate full-surround 3D multi-object detection and tracking algorithms. 3D object detection and tracking algorithms are trained and tested on H3D. Finally, sources of errors are discussed for the development of future algorithms.
Most salient object detection approaches use U-Net or feature pyramid networks (FPN) as their basic structures. These methods ignore two key problems when the encoder exchanges information with the decoder: one is the lack of interference control bet ween them, the other is without considering the disparity of the contributions of different encoder blocks. In this work, we propose a simple gated network (GateNet) to solve both issues at once. With the help of multilevel gate units, the valuable context information from the encoder can be optimally transmitted to the decoder. We design a novel gated dual branch structure to build the cooperation among different levels of features and improve the discriminability of the whole network. Through the dual branch design, more details of the saliency map can be further restored. In addition, we adopt the atrous spatial pyramid pooling based on the proposed Fold operation (Fold-ASPP) to accurately localize salient objects of various scales. Extensive experiments on five challenging datasets demonstrate that the proposed model performs favorably against most state-of-the-art methods under different evaluation metrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا