ترغب بنشر مسار تعليمي؟ اضغط هنا

3D-MAN: 3D Multi-frame Attention Network for Object Detection

89   0   0.0 ( 0 )
 نشر من قبل Zetong Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

3D object detection is an important module in autonomous driving and robotics. However, many existing methods focus on using single frames to perform 3D detection, and do not fully utilize information from multiple frames. In this paper, we present 3D-MAN: a 3D multi-frame attention network that effectively aggregates features from multiple perspectives and achieves state-of-the-art performance on Waymo Open Dataset. 3D-MAN first uses a novel fast single-frame detector to produce box proposals. The box proposals and their corresponding feature maps are then stored in a memory bank. We design a multi-view alignment and aggregation module, using attention networks, to extract and aggregate the temporal features stored in the memory bank. This effectively combines the features coming from different perspectives of the scene. We demonstrate the effectiveness of our approach on the large-scale complex Waymo Open Dataset, achieving state-of-the-art results compared to published single-frame and multi-frame methods.



قيم البحث

اقرأ أيضاً

3D object detection based on LiDAR-camera fusion is becoming an emerging research theme for autonomous driving. However, it has been surprisingly difficult to effectively fuse both modalities without information loss and interference. To solve this i ssue, we propose a single-stage multi-view fusion framework that takes LiDAR birds-eye view, LiDAR range view and camera view images as inputs for 3D object detection. To effectively fuse multi-view features, we propose an attentive pointwise fusion (APF) module to estimate the importance of the three sources with attention mechanisms that can achieve adaptive fusion of multi-view features in a pointwise manner. Furthermore, an attentive pointwise weighting (APW) module is designed to help the network learn structure information and point feature importance with two extra tasks, namely, foreground classification and center regression, and the predicted foreground probability is used to reweight the point features. We design an end-to-end learnable network named MVAF-Net to integrate these two components. Our evaluations conducted on the KITTI 3D object detection datasets demonstrate that the proposed APF and APW modules offer significant performance gains. Moreover, the proposed MVAF-Net achieves the best performance among all single-stage fusion methods and outperforms most two-stage fusion methods, achieving the best trade-off between speed and accuracy on the KITTI benchmark.
LiDAR sensors can be used to obtain a wide range of measurement signals other than a simple 3D point cloud, and those signals can be leveraged to improve perception tasks like 3D object detection. A single laser pulse can be partially reflected by mu ltiple objects along its path, resulting in multiple measurements called echoes. Multi-echo measurement can provide information about object contours and semi-transparent surfaces which can be used to better identify and locate objects. LiDAR can also measure surface reflectance (intensity of laser pulse return), as well as ambient light of the scene (sunlight reflected by objects). These signals are already available in commercial LiDAR devices but have not been used in most LiDAR-based detection models. We present a 3D object detection model which leverages the full spectrum of measurement signals provided by LiDAR. First, we propose a multi-signal fusion (MSF) module to combine (1) the reflectance and ambient features extracted with a 2D CNN, and (2) point cloud features extracted using a 3D graph neural network (GNN). Second, we propose a multi-echo aggregation (MEA) module to combine the information encoded in different set of echo points. Compared with traditional single echo point cloud methods, our proposed Multi-Signal LiDAR Detector (MSLiD) extracts richer context information from a wider range of sensing measurements and achieves more accurate 3D object detection. Experiments show that by incorporating the multi-modality of LiDAR, our method outperforms the state-of-the-art by up to 9.1%.
Point clouds and images could provide complementary information when representing 3D objects. Fusing the two kinds of data usually helps to improve the detection results. However, it is challenging to fuse the two data modalities, due to their differ ent characteristics and the interference from the non-interest areas. To solve this problem, we propose a Multi-Branch Deep Fusion Network (MBDF-Net) for 3D object detection. The proposed detector has two stages. In the first stage, our multi-branch feature extraction network utilizes Adaptive Attention Fusion (AAF) modules to produce cross-modal fusion features from single-modal semantic features. In the second stage, we use a region of interest (RoI) -pooled fusion module to generate enhanced local features for refinement. A novel attention-based hybrid sampling strategy is also proposed for selecting key points in the downsampling process. We evaluate our approach on two widely used benchmark datasets including KITTI and SUN-RGBD. The experimental results demonstrate the advantages of our method over state-of-the-art approaches.
Point clouds and RGB images are naturally complementary modalities for 3D visual understanding - the former provides sparse but accurate locations of points on objects, while the latter contains dense color and texture information. Despite this poten tial for close sensor fusion, many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data. This separated training scheme results in potentially sub-optimal performance and prevents 3D tasks from being used to benefit 2D tasks that are often useful on their own. To provide a more integrated approach, we propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions, which are then used to further refine the 3D boxes. We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance. Moreover, to prevent the 3D module from over-relying on the overfitted 2D predictions, we propose a dual-head 2D segmentation training and inference scheme, allowing the 2nd 3D module to learn to interpret imperfect 2D segmentation predictions. Evaluating our model on the challenging SUN RGB-D dataset, we improve upon state-of-the-art results of both single modality and fusion networks by a large margin ($textbf{+3.8}$ [email protected]). Code will be released $href{https://github.com/Divadi/MTC_RCNN}{text{here.}}$
Accurate detection of obstacles in 3D is an essential task for autonomous driving and intelligent transportation. In this work, we propose a general multimodal fusion framework FusionPainting to fuse the 2D RGB image and 3D point clouds at a semantic level for boosting the 3D object detection task. Especially, the FusionPainting framework consists of three main modules: a multi-modal semantic segmentation module, an adaptive attention-based semantic fusion module, and a 3D object detector. First, semantic information is obtained for 2D images and 3D Lidar point clouds based on 2D and 3D segmentation approaches. Then the segmentation results from different sensors are adaptively fused based on the proposed attention-based semantic fusion module. Finally, the point clouds painted with the fused semantic label are sent to the 3D detector for obtaining the 3D objection results. The effectiveness of the proposed framework has been verified on the large-scale nuScenes detection benchmark by comparing it with three different baselines. The experimental results show that the fusion strategy can significantly improve the detection performance compared to the methods using only point clouds, and the methods using point clouds only painted with 2D segmentation information. Furthermore, the proposed approach outperforms other state-of-the-art methods on the nuScenes testing benchmark.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا