ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppress and Balance: A Simple Gated Network for Salient Object Detection

111   0   0.0 ( 0 )
 نشر من قبل Xiaoqi Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most salient object detection approaches use U-Net or feature pyramid networks (FPN) as their basic structures. These methods ignore two key problems when the encoder exchanges information with the decoder: one is the lack of interference control between them, the other is without considering the disparity of the contributions of different encoder blocks. In this work, we propose a simple gated network (GateNet) to solve both issues at once. With the help of multilevel gate units, the valuable context information from the encoder can be optimally transmitted to the decoder. We design a novel gated dual branch structure to build the cooperation among different levels of features and improve the discriminability of the whole network. Through the dual branch design, more details of the saliency map can be further restored. In addition, we adopt the atrous spatial pyramid pooling based on the proposed Fold operation (Fold-ASPP) to accurately localize salient objects of various scales. Extensive experiments on five challenging datasets demonstrate that the proposed model performs favorably against most state-of-the-art methods under different evaluation metrics.



قيم البحث

اقرأ أيضاً

Albeit intensively studied, false prediction and unclear boundaries are still major issues of salient object detection. In this paper, we propose a Region Refinement Network (RRN), which recurrently filters redundant information and explicitly models boundary information for saliency detection. Different from existing refinement methods, we propose a Region Refinement Module (RRM) that optimizes salient region prediction by incorporating supervised attention masks in the intermediate refinement stages. The module only brings a minor increase in model size and yet significantly reduces false predictions from the background. To further refine boundary areas, we propose a Boundary Refinement Loss (BRL) that adds extra supervision for better distinguishing foreground from background. BRL is parameter free and easy to train. We further observe that BRL helps retain the integrity in prediction by refining the boundary. Extensive experiments on saliency detection datasets show that our refinement module and loss bring significant improvement to the baseline and can be easily applied to different frameworks. We also demonstrate that our proposed model generalizes well to portrait segmentation and shadow detection tasks.
Owing to the difficulties of mining spatial-temporal cues, the existing approaches for video salient object detection (VSOD) are limited in understanding complex and noisy scenarios, and often fail in inferring prominent objects. To alleviate such sh ortcomings, we propose a simple yet efficient architecture, termed Guidance and Teaching Network (GTNet), to independently distil effective spatial and temporal cues with implicit guidance and explicit teaching at feature- and decision-level, respectively. To be specific, we (a) introduce a temporal modulator to implicitly bridge features from motion into the appearance branch, which is capable of fusing cross-modal features collaboratively, and (b) utilise motion-guided mask to propagate the explicit cues during the feature aggregation. This novel learning strategy achieves satisfactory results via decoupling the complex spatial-temporal cues and mapping informative cues across different modalities. Extensive experiments on three challenging benchmarks show that the proposed method can run at ~28 fps on a single TITAN Xp GPU and perform competitively against 14 cutting-edge baselines.
Deep-learning based salient object detection methods achieve great progress. However, the variable scale and unknown category of salient objects are great challenges all the time. These are closely related to the utilization of multi-level and multi- scale features. In this paper, we propose the aggregate interaction modules to integrate the features from adjacent levels, in which less noise is introduced because of only using small up-/down-sampling rates. To obtain more efficient multi-scale features from the integrated features, the self-interaction modules are embedded in each decoder unit. Besides, the class imbalance issue caused by the scale variation weakens the effect of the binary cross entropy loss and results in the spatial inconsistency of the predictions. Therefore, we exploit the consistency-enhanced loss to highlight the fore-/back-ground difference and preserve the intra-class consistency. Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches. The source code will be publicly available at https://github.com/lartpang/MINet.
Existing RGB-D salient object detection (SOD) models usually treat RGB and depth as independent information and design separate networks for feature extraction from each. Such schemes can easily be constrained by a limited amount of training data or over-reliance on an elaborately designed training process. Inspired by the observation that RGB and depth modalities actually present certain commonality in distinguishing salient objects, a novel joint learning and densely cooperative fusion (JL-DCF) architecture is designed to learn from both RGB and depth inputs through a shared network backbone, known as the Siamese architecture. In this paper, we propose two effective components: joint learning (JL), and densely cooperative fusion (DCF). The JL module provides robust saliency feature learning by exploiting cross-modal commonality via a Siamese network, while the DCF module is introduced for complementary feature discovery. Comprehensive experiments using five popular metrics show that the designed framework yields a robust RGB-D saliency detector with good generalization. As a result, JL-DCF significantly advances the state-of-the-art models by an average of ~2.0% (max F-measure) across seven challenging datasets. In addition, we show that JL-DCF is readily applicable to other related multi-modal detection tasks, including RGB-T (thermal infrared) SOD and video SOD, achieving comparable or even better performance against state-of-the-art methods. We also link JL-DCF to the RGB-D semantic segmentation field, showing its capability of outperforming several semantic segmentation models on the task of RGB-D SOD. These facts further confirm that the proposed framework could offer a potential solution for various applications and provide more insight into the cross-modal complementarity task.
92 - Yu-Huan Wu , Yun Liu , Le Zhang 2020
Recent progress on salient object detection (SOD) mainly benefits from multi-scale learning, where the high-level and low-level features collaborate in locating salient objects and discovering fine details, respectively. However, most efforts are dev oted to low-level feature learning by fusing multi-scale features or enhancing boundary representations. High-level features, which although have long proven effective for many other tasks, yet have been barely studied for SOD. In this paper, we tap into this gap and show that enhancing high-level features is essential for SOD as well. To this end, we introduce an Extremely-Downsampled Network (EDN), which employs an extreme downsampling technique to effectively learn a global view of the whole image, leading to accurate salient object localization. To accomplish better multi-level feature fusion, we construct the Scale-Correlated Pyramid Convolution (SCPC) to build an elegant decoder for recovering object details from the above extreme downsampling. Extensive experiments demonstrate that EDN achieves state-of-the-art performance with real-time speed. Our efficient EDN-Lite also achieves competitive performance with a speed of 316fps. Hence, this work is expected to spark some new thinking in SOD. Full training and testing code will be available at https://github.com/yuhuan-wu/EDN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا