ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimensional Control of Octahedral Tilt in SrRuO3 via Infinite-layered Oxides

135   0   0.0 ( 0 )
 نشر من قبل Er-Jia Guo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Manipulation of octahedral distortion at atomic length scale is an effective means to tune the physical ground states of functional oxides. Previous work demonstrates that epitaxial strain and film thickness are variable parameters to modify the octahedral rotation and tilt. However, selective control of bonding geometry by structural propagation from adjacent layers is rarely studied. Here we propose a new route to tune the ferromagnetic response in SrRuO3 (SRO) ultrathin layers by oxygen coordination of adjacent SrCuO2 (SCO) layers. The infinite-layered CuO2 in SCO exhibits a structural transformation from planar-type to chain-type as reducing film thickness. These two orientations dramatically modify the polyhedral connectivity at the interface, thus altering the octahedral distortion of SRO. The local structural variation changes the spin state of Ru and hybridization strength between Ru 4d and O 2p orbitals, leading to a significant change in the magnetoresistance and anomalous Hall resistivity of SRO layers. These findings could launch further investigations into adaptive control of magnetoelectric properties in quantum oxide heterostructures using oxygen coordination.

قيم البحث

اقرأ أيضاً

Bonding geometry engineering of metal-oxygen octahedra is a facile way of tailoring various functional properties of transition metal oxides. Several approaches, including epitaxial strain, thickness, and stoichiometry control, have been proposed to efficiently tune the rotation and tilting of the octahedra, but these approaches are inevitably accompanied by unnecessary structural modifications such as changes in thin-film lattice parameters. In this study, we propose a method to selectively engineer the octahedral bonding geometries, while maintaining other parameters that might implicitly influence the functional properties. A concept of octahedral tilt propagation engineering has been developed using atomically designed SrRuO3/SrTiO3 superlattices. In particular, the propagation of RuO6 octahedral tilting within the SrRuO3 layers having identical thicknesses was systematically controlled by varying the thickness of adjacent SrTiO3 layers. This led to a substantial modification in the electromagnetic properties of the SrRuO3 layer, significantly enhancing the magnetic moment of Ru. Our approach provides a method to selectively manipulate the bonding geometry of strongly correlated oxides, thereby enabling a better understanding and greater controllability of their functional properties.
The atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with des igned termination sequences. Here, we demonstrate that the oxygen pressure (PO2) during growth plays an important role in controlling the interfacial terminations of SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) ferroelectric capacitors. The SRO/BTO/SRO heterostructures were grown by the pulsed laser deposition (PLD) method. The top SRO/BTO interface grown at high PO2 (around 150 mTorr) usually exhibited a mixture of RuO2-BaO and SrO-TiO2 terminations. By reducing PO2, we obtained atomically sharp SRO/BTO top interfaces with uniform SrO-TiO2 termination. Using capacitor devices with symmetric and uniform interfacial termination, we were able to demonstrate for the first time that the ferroelectric (FE) critical thickness can reach the theoretical limit of 3.5 unit cells (u.c.).
The correlation between the shift current mechanism for the bulk photovoltaic effect (BPVE) and the structural and electronic properties of ferroelectric perovskite oxides is not well understood. Here, we study and engineer the shift current photovol taic effect using a visible-light-absorbing ferroelectric Pb(Ni$_{x}$Ti$_{1-x}$)O$_{3-x}$ solid solution from first principles. We show that the covalent orbital character dicates the direction, magnitude, and onset energy of shift current in a predictable fashion. In particular, we find that the shift current response can be enhanced via electrostatic control in layered ferroelectrics, as bound charges face a stronger impetus to screen the electric field in a thicker material, delocalizing electron densities. This heterogeneous layered structure with alternative photocurrent generating and insulating layers is ideal for BPVE applications.
Elemental defects in transition metal oxides is an important and intriguing subject that result in modifications in variety of physical properties including atomic and electronic structure, optical and magnetic properties. Understanding the formation of elemental vacancies and their influence on different physical properties is essential in studying the complex oxide thin films. In this study, we investigated the physical properties of epitaxial SrRuO3 thin films by systematically manipulating cation and/or oxygen vacancies, via changing the oxygen partial pressure (P(O2)) during the pulsed laser epitaxy (PLE) growth. Ru vacancies in the low-P(O2)-grown SrRuO3 thin films induce lattice expansion with the suppression of the ferromagnetic TC down to ~120 K. Sr vacancies also disturb the ferromagnetic ordering, even though Sr is not a magnetic element. Our results indicate that both A and B cation vacancies in an ABO3 perovskite can be systematically engineered via PLE, and the structural, electrical, and magnetic properties can be tailored accordingly.
213 - M. Horio , C. E. Matt , K. Kramer 2018
Relativistic massless Dirac fermions can be probed with high-energy physics experiments, but appear also as low-energy quasi-particle excitations in electronic band structures. In condensed matter systems, their massless nature can be protected by cr ystal symmetries. Classification of such symmetry-protected relativistic band degeneracies has been fruitful, although many of the predicted quasi-particles still await their experimental discovery. Here we reveal, using angle-resolved photoemission spectroscopy, the existence of two-dimensional type-II Dirac fermions in the high-temperature superconductor La$_{1.77}$Sr$_{0.23}$CuO$_4$. The Dirac point, constituting the crossing of $d_{x^2-y^2}$ and $d_{z^2}$ bands, is found approximately one electronvolt below the Fermi level ($E_mathrm{F}$) and is protected by mirror symmetry. If spin-orbit coupling is considered, the Dirac point degeneracy is lifted and the bands acquire a topologically non-trivial character. In certain nickelate systems, band structure calculations suggest that the same type-II Dirac fermions can be realised near $E_mathrm{F}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا