ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning electromagnetic properties of SrRuO3 epitaxial thin films via atomic control of cation vacancies

78   0   0.0 ( 0 )
 نشر من قبل Sang A Lee
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Elemental defects in transition metal oxides is an important and intriguing subject that result in modifications in variety of physical properties including atomic and electronic structure, optical and magnetic properties. Understanding the formation of elemental vacancies and their influence on different physical properties is essential in studying the complex oxide thin films. In this study, we investigated the physical properties of epitaxial SrRuO3 thin films by systematically manipulating cation and/or oxygen vacancies, via changing the oxygen partial pressure (P(O2)) during the pulsed laser epitaxy (PLE) growth. Ru vacancies in the low-P(O2)-grown SrRuO3 thin films induce lattice expansion with the suppression of the ferromagnetic TC down to ~120 K. Sr vacancies also disturb the ferromagnetic ordering, even though Sr is not a magnetic element. Our results indicate that both A and B cation vacancies in an ABO3 perovskite can be systematically engineered via PLE, and the structural, electrical, and magnetic properties can be tailored accordingly.

قيم البحث

اقرأ أيضاً

Berry curvature plays a crucial role in exotic electronic states of quantum materials, such as intrinsic anomalous Hall effect. As Berry curvature is highly sensitive to subtle changes of electronic band structures, it can be finely tuned via externa l stimulus. Here, we demonstrate in SrRuO3 thin films that both the magnitude and sign of anomalous Hall resistivity can be effectively controlled with epitaxial strain. Our first-principles calculations reveal that epitaxial strain induces an additional crystal field splitting and changes the order of Ru d orbital energies, which alters the Berry curvature and leads to the sign and magnitude change of anomalous Hall conductivity. Furthermore, we show that the rotation of Ru magnetic moment in real space of tensile strained sample can result in an exotic nonmonotonic change of anomalous Hall resistivity with the sweeping of magnetic field, resembling the topological Hall effect observed in non-coplanar spin systems. These findings not only deepen our understanding of anomalous Hall effect in SrRuO3 systems, but also provide an effective tuning knob to manipulate Berry curvature and related physical properties in a wide range of quantum materials.
The ability to manipulate oxygen anion defects rather than metal cations in complex oxides can facilitate creating new functionalities critical for emerging energy and device technologies. However, the difficulty in activating oxygen at reduced tempe ratures hinders the deliberate control of important defects, oxygen vacancies. Here, strontium cobaltite (SrCoOx) is used to demonstrate that epitaxial strain is a powerful tool for manipulating the oxygen vacancy concentration even under highly oxidizing environments and at annealing temperatures as low as 300 C. By applying a small biaxial tensile strain (2%), the oxygen activation energy barrier decreases by ~30%, resulting in a tunable oxygen deficient steady-state under conditions that would normally fully oxidize unstrained cobaltite. These strain-induced changes in oxygen stoichiometry drive the cobaltite from a ferromagnetic metal towards an antiferromagnetic insulator. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful for effectively designing oxides materials with a specific oxygen stoichiometry.
We report the observation of spin-glass-like behavior and strong magnetic anisotropy in extremely smooth (~1-3 AA) roughness) epitaxial (110) and (010) SrRuO3 thin films. The easy axis of magnetization is always perpendicular to the plane of the film (unidirectional) irrespective of crystallographic orientation. An attempt has been made to understand the nature and origin of spin-glass behavior, which fits well with Heisenberg model.
Epitaxial strain in 4d ferromagnet SrRuO3 films is directly linked to the physical properties through the strong coupling between lattices, electrons, and spins. It provides an excellent opportunity to tune the functionalities of SrRuO3 in electronic and spintronic devices. However, a thorough understanding of the epitaxial strain effect in SrRuO3 has remained elusive due to the lack of systematic studies. This study demonstrates wide-range epitaxial strain control of electrical and magnetic properties in high-quality SrRuO3 films. The epitaxial strain was imposed by cubic or pseudocubic perovskite substrates having a lattice mismatch of -1.6 to 2.3% with reference to bulk SrRuO3. The Poisson ratio, which describes the two orthogonal distortions due to the substrate clamping effect, is estimated to be 0.33. The Curie temperature (TC) and residual resistivity ratios of the series of films are higher than or comparable to the highest reported values for SrRuO3 on each substrate, confirming the high crystalline quality of the films. A TC of 169 K is achieved in a tensile-strained SrRuO3 film on the DyScO3 (110) substrate, which is the highest value ever reported for SrRuO3. The TC (146-169 K), magnetic anisotropy (perpendicular or in-plane magnetic easy axis), and metallic conduction (residual resistivity at 2 K of 2.10 - 373 {mu}{Omega}cm) of SrRuO3 are widely controlled by epitaxial strain. These results provide guidelines to design SrRuO3-based heterostructures for device applications.
We report on the effect of epitaxial strain on magnetic and optical properties of perovskite LaCrO3 (LCO) single crystal thin films. Epitaxial LCO thin films are grown by pulsed laser deposition on proper choice of substrates to impose different stra in states. A combined experimental and theoretical approach is used to demonstrate the direct correlation between lattice-strain and functional properties. The magnetization results show that the lattice anisotropy plays a critical role in controlling the magnetic behavior of LCO films. The strain induced tetragonality in the film lattice strongly affects the optical transitions and charge transfer gap in LCO. This study opens new possibilities to tailoring the functional properties of LCO and related materials by strain engineering in epitaxial growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا