ﻻ يوجد ملخص باللغة العربية
The correlation between the shift current mechanism for the bulk photovoltaic effect (BPVE) and the structural and electronic properties of ferroelectric perovskite oxides is not well understood. Here, we study and engineer the shift current photovoltaic effect using a visible-light-absorbing ferroelectric Pb(Ni$_{x}$Ti$_{1-x}$)O$_{3-x}$ solid solution from first principles. We show that the covalent orbital character dicates the direction, magnitude, and onset energy of shift current in a predictable fashion. In particular, we find that the shift current response can be enhanced via electrostatic control in layered ferroelectrics, as bound charges face a stronger impetus to screen the electric field in a thicker material, delocalizing electron densities. This heterogeneous layered structure with alternative photocurrent generating and insulating layers is ideal for BPVE applications.
We calculate the bulk photovoltaic response of the ferroelectrics BaTiO$_3$ and PbTiO$_3$ from first principles by applying shift current theory to the electronic structure from density functional theory. The first principles results for BaTiO$_3$ re
Statistical distribution of switching times is a key information necessary to describe the dynamic response of a polycrystalline bulk ferroelectric to an applied electric field. The Inhomogeneous Field Mechanism (IFM) model offers a useful tool which
Structurally chiral materials hosting multifold fermions with large topological number have attracted considerable attention because of their naturally long surface Fermi arcs and bulk quantized circular photogalvanic effect (CPGE). Multifold fermion
Spin current generators are critical components for spintronics-based information processing. In this work, we theoretically and computationally investigate the bulk spin photovoltaic (BSPV) effect for creating DC spin current under light illuminatio
Wake-up effect is still an obstacle in the commercialization of hafnia-based ferroelectric thin films. In this work, we investigate the effect of defects, controlled by ozone dosage, on the field cycling behavior of the atomic layer deposited Hf0.5Zr