ترغب بنشر مسار تعليمي؟ اضغط هنا

The Topological Origin of the Peierls-Nabarro Barrier

72   0   0.0 ( 0 )
 نشر من قبل Thomas Machon
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Crystals and other condensed matter systems described by density waves often exhibit dislocations. Here we show, by considering the topology of the ground state manifolds (GSMs) of such systems, that dislocations in the density phase field always split into disclinations, and that the disclinations themselves are constrained to sit at particular points in the GSM. Consequently, the topology of the GSM forbids zero-energy dislocation glide, giving rise to a Peirels-Nabarro barrier.



قيم البحث

اقرأ أيضاً

Elastomers that can sustain large reversible strain are essential components for stretchable electronics. The stretchability and mechanical robustness of unfilled elastomers can be enhanced by introducing easier-to-break cross-links, e.g. through the multi-network structure, which also causes stress-strain hysteresis indicating strain-induced damage. However, it remains unclear whether cross-link breakage follows a predictable pattern that can be used to understand the damage evolution with strain. Using coarse-grained molecular dynamics and topology analyses of the polymer network, we find that bond-breaking events are controlled by the evolution of the global shortest path length between well-separated cross-links, which is both anisotropic and hysteretic with strain. These findings establish an explicit connection between the molecular structure and the macroscopic mechanical behavior of elastomers, thereby providing guidelines for designing mechanically robust soft materials.
296 - Santi Prestipino 2018
Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized bias ed-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here, I focus on the barrier to homogeneous ice nucleation in supercooled water, as represented by the monatomic-water model, which in the bulk exhibits a complex interplay between different ice structures. I consider various protocols to identify solidlike particles on a computer, which perform well enough for the Lennard-Jones model, and compare their respective impact on the shape and height of the nucleation barrier. It turns out that the effect is stronger on the nucleus size than on the barrier height. As a by-product of the analysis, I determine the structure of the nucleation cluster, finding that the relative amount of ice phases in the cluster heavily depends on the method used for classifying solidlike particles. Moreover, the phase which is most favored during the earlier stages of crystallization may happen, depending on the nucleation coordinate adopted, to be different from the stable polymorph. Therefore, the quality of a reaction coordinate cannot be assessed simply on the basis of the barrier height obtained. I explain how this outcome is possible and why it just points out the shortcoming of collective variables appropriate to simple fluids in providing a robust method of particle classification for monatomic water.
The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the non-uniform distribution of Debye-Waller factors. The increased mobility at the surface i s found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T, we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
In this paper we study the macroscopic conduction properties of large but finite binary networks with conducting bonds. By taking a combination of a spectral and an averaging based approach we derive asymptotic formulae for the conduction in terms of the component proportions p and the total number of components N. These formulae correctly identify both the percolation limits and also the emergent power law behaviour between the percolation limits and show the interplay between the size of the network and the deviation of the proportion from the critical value of p = 1/2. The results compare excellently with a large number of numerical simulations.
Photoconduction in the monoclinic phase of quasi-one-dimensional conductor TaS$_3$ has been observed at $T < 70$~K. It was studied jointly with low-temperature ohmic and non-linear dark conduction. The strong sample quality dependence of both photoco nduction and dark conduction at this temperature region has been observed. Together with a similarity of the main features of the photoconduction characteristic of both monoclinic ({it m-}TaS$_3$) and orthorhombic ({it o-}TaS$_3$) samples the following new peculiarities of photoconduction in {it m-}TaS$_3$ were found: 1) the dependence of the activation energy of photoconduction on temperature, $T$, 2) the change of the recombination mechanism from the linear type to the collisional one at low $T$ with a sample quality growth, 3) the existence of a fine structure of the electric-field dependence of photoconduction. Spectral study gives the Peierls energy gap value $2Delta ^*= 0.18$~eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا