ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological origin of strain induced damage of multi-network elastomers by bond breaking

148   0   0.0 ( 0 )
 نشر من قبل Wei Cai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Elastomers that can sustain large reversible strain are essential components for stretchable electronics. The stretchability and mechanical robustness of unfilled elastomers can be enhanced by introducing easier-to-break cross-links, e.g. through the multi-network structure, which also causes stress-strain hysteresis indicating strain-induced damage. However, it remains unclear whether cross-link breakage follows a predictable pattern that can be used to understand the damage evolution with strain. Using coarse-grained molecular dynamics and topology analyses of the polymer network, we find that bond-breaking events are controlled by the evolution of the global shortest path length between well-separated cross-links, which is both anisotropic and hysteretic with strain. These findings establish an explicit connection between the molecular structure and the macroscopic mechanical behavior of elastomers, thereby providing guidelines for designing mechanically robust soft materials.

قيم البحث

اقرأ أيضاً

Using dissipative particle dynamics (DPD) simulation method, we study the phase separation dynamics in block copolymer (BCP) melt in $d=3$, subjected to external stimuli such as light. An initial homogeneous BCP melt is rapidly quenched to a temperat ure $T < T_c$, where $T_c$ is the critical temperature. We then let the system go through alternate light on and off cycles. An on-cycle breaks the stimuli-sensitive bonds connecting both the blocks A and B in BCP melt, and during the off-cycle, broken bonds reconnect. By simulating the effect of light, we isolate scenarios where phase separation begins with the light off (set 1); the cooperative interactions within the system allow it to undergo microphase separation. When the phase separation starts with the light on (set 2), the system undergoes macrophase separation due to the bond breaking. Here, we report the role of alternate cycles on domain morphology by varying bond-breaking probability for both the sets 1 and 2, respectively. We observe that the scaling functions depend upon the conditions mentioned above that change the time scale of the evolving morphologies in various cycles. However, in all the cases, the average domain size respects the power-law growth: $R(t)sim t^{phi}$ at late times, here $phi$ is the dynamic growth exponent. After a short-lived diffusive growth ($phi sim 1/3$) at early times, $phi$ illustrates a crossover from the viscous hydrodynamic ($phi sim 1$) to the inertial hydrodynamic ($phi sim 2/3$) regimes at late times.
Soft elastic composite materials can serve as actuators when they transform changes in external fields into mechanical deformation. Here, we address the corresponding deformational behavior of magnetic gels and elastomers, consisting of magnetizable colloidal particles in a soft polymeric matrix and exposed to external magnetic fields. Since many practical realizations of such materials involve particulate inclusions of polydisperse size distributions, we concentrate on the effect that mixed particle sizes have on the overall deformational response. To perform a systematic study, our focus is on binary size distributions. We systematically vary the fraction of larger particles relative to smaller ones and characterize the resulting magnetostrictive behavior. The consequences for systems of various different spatial particle arrangements and different degrees of compressibility of the elastic matrix are evaluated. In parts, we observe a qualitative change in the overall response for selected systems of mixed particle sizes. Specifically, overall changes in volume and relative elongations or contractions in response to an induced magnetization can be reversed into the opposite types of behavior. Our results should apply to the characteristics of other soft elastic composite materials like electrorheological gels and elastomers when exposed to external electric fields as well. Overall, we hope to stimulate the further investigation on the purposeful use of mixed particle sizes as a means to design tailored requested material behavior.
Crystals and other condensed matter systems described by density waves often exhibit dislocations. Here we show, by considering the topology of the ground state manifolds (GSMs) of such systems, that dislocations in the density phase field always spl it into disclinations, and that the disclinations themselves are constrained to sit at particular points in the GSM. Consequently, the topology of the GSM forbids zero-energy dislocation glide, giving rise to a Peirels-Nabarro barrier.
In the present paper, we propose a new way to classify centrosymmetric metals by studying the Zeeman effect caused by an external magnetic field described by the momentum dependent g-factor tensor on the Fermi surfaces. Nontrivial U(1) Berrys phase a nd curvature can be generated once the otherwise degenerate Fermi surfaces are splitted by the Zeeman effect, which will be determined by both the intrinsic band structure and the structure of g-factor tensor on the manifold of the Fermi surfaces. Such Zeeman effect generated Berrys phase and curvature can lead to three important experimental effects, modification of spin-zero effect, Zeeman effect induced Fermi surface Chern number and the in-plane anomalous Hall effect. By first principle calculations, we study all these effects on two typical material, ZrTe$_5$ and TaAs$_2$ and the results are in good agreement with the existing experiments.
Magnetic gels and elastomers are promising candidates to construct reversibly excitable soft actuators, triggered from outside by magnetic fields. These magnetic fields induce or alter the magnetic interactions between discrete rigid particles embedd ed in a soft elastic polymeric matrix, leading to overall deformations. It is a major challenge in theory to correctly predict from the discrete particle configuration the type of deformation resulting for a finite-sized system. Considering an elastic sphere, we here present such an approach. The method is in principle exact, at least within the framework of linear elasticity theory and for large enough interparticle distances. Different particle arrangements are considered. We find, for instance, that regular simple cubic configurations show elongation of the sphere along the magnetization if oriented along a face or space diagonal of the cubic unit cell. Contrariwise, with the magnetization along the edge of the cubic unit cell, they contract. The opposite is true in this geometry for body- and face-centered configurations. Remarkably, for the latter configurations but the magnetization along a face or space diagonal of the unit cell, contraction was observed to revert to expansion with decreasing Poisson ratio of the elastic material. Randomized configurations were considered as well. They show a tendency of elongating the sphere along the magnetization, which is more pronounced for compressible systems. Our results can be tested against actual experiments for spherical samples. Moreover, our approach shall support the search of optimal particle distributions for a maximized effect of actuation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا