ﻻ يوجد ملخص باللغة العربية
Photoconduction in the monoclinic phase of quasi-one-dimensional conductor TaS$_3$ has been observed at $T < 70$~K. It was studied jointly with low-temperature ohmic and non-linear dark conduction. The strong sample quality dependence of both photoconduction and dark conduction at this temperature region has been observed. Together with a similarity of the main features of the photoconduction characteristic of both monoclinic ({it m-}TaS$_3$) and orthorhombic ({it o-}TaS$_3$) samples the following new peculiarities of photoconduction in {it m-}TaS$_3$ were found: 1) the dependence of the activation energy of photoconduction on temperature, $T$, 2) the change of the recombination mechanism from the linear type to the collisional one at low $T$ with a sample quality growth, 3) the existence of a fine structure of the electric-field dependence of photoconduction. Spectral study gives the Peierls energy gap value $2Delta ^*= 0.18$~eV.
CDW/Normal metal/CDW junctions and nanoconstrictions in crystals of the quasi-one-dimensional conductor NbSe$_3$ are manufactured using a focused-ion-beam. It is found that the low-temperature conduction of these structures changes dramatically and l
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha
NbSe$_3$ and monoclinic-TaS$_3$ ($m$-TaS$_3$) are quasi-1D metals containing three different types of chains and undergoing two different charge density wave (CDW) Peierls transitions at T$_{P_1}$ and T$_{P_2}$. The nature of these transitions is dis
We investigate the low-temperature charge-density-wave (CDW) state of bulk TaS$_2$ with a fully self-consistent DFT+U approach, over which the controversy has remained unresolved regarding the out-of-plane metallic band. By examining the innate struc
Impurities and defects are known to affect the properties of the charge density wave (CDW) state but the influence of impurities on the density of states inside the Peierls gap remains largely unexplored. Here we present an experimental study of the